比例的认识二教案7篇

时间:
Mute
分享
下载本文

编写教案可以促使我们思考教学的目标和意义,激发我们的教学热情,详细的教案可以让我们的课堂更加丰富有趣,写文书吧小编今天就为您带来了比例的认识二教案7篇,相信一定会对你有所帮助。

比例的认识二教案7篇

比例的认识二教案篇1

教学目标

1.经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.进一步体会数学与日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重点

正确理解正比例的意义,并能准确判断成正比例的量。

教学难点

引导学生通过观察、思考发现两种相关联的量的变化规律,概括出正比例关系的概念。

教学资源

学生已学过一些常见的数量关系和计算公式,掌握比和比例的知识。

预习菜单。

预习作业设计

1.填空

①已知路程和时间,怎样求速度?()Ο()=速度

②已知总价和数量,怎样求单价?()Ο()=速度

③已知工作总量和工作时间,怎样求工作效率?()Ο()=速度

2.预习例1观察下表,思考下列问题:

一辆汽车行驶的时间和路程如下:

时间(时)

1

2

3

4

5

6

……

路程

(千米)

80

160

240

320

4000

480

……

①表中有哪两种量?

②这两种量的数值分别是怎样变化的?

③你发现这两种量变化有什么规律吗?如果看不出规律的话,可以先写出几组相对应的路程和时间的比,求出比值,想想有什么规律。

学程设计导航策略调整反思

一、揭示题课,认定目标(预设2分钟)我们学过一些常见的数量关系,这节课我们进一步来研究这些数量关系中的一些特征。通过学习我们要弄清什么样的两个量成正比例,怎样判断两种量是否成正比例。

二、交流合作,提炼建模(预设7分钟)

1.出示例1小组交流预习情况。

2.全班交流汇报,探究新知:

①理解“相关联的量”。

②用式子表示路程和时间的变化规律。

③学生看书、质疑。揭示路程和时间是成正比例的量。

3.根据板书完整地说一说表中路程和时间成什么关系。组织全班交流

1.引导学生认识:时间变化,路程也随着变化,这样的两种量,就叫做两种相关联的量。(板书:两种相关联的量)实际生活中,还有哪些相关联的量呢?跟你的同桌说一说。结合举例,抓住“随着”一词说明:一种量的变化,是因为由另一种量的变化引起的,这样的两种量才是相关联的量。

2.引导学生用式子表示路程和时间的变化规律,教师相机板书:路程/时间=速度(一定)

3.象这样的两种量,它们的关系叫什么?请同学们打开课本,自己获取有关概念。组织汇报:通过看书,你知道了些什么?还有什么疑问?(老师适时板书)

4.教师指导学生完整地说一说表中路程和时间的正比例关系。

三、抽象分析,掌握方法(预设10分钟)1.围绕学习菜单完成“试一试”。

①独立思考。

②小组交流。

2.全班交流汇报。完整地说说表中总价和数量成什么关系。

3.比较例1与试一试,思考并讨论,这两个题有什么共同点?

4.如果用字母χ和У分别表示两种相关联的量,用κ表示它们的比值,用式子怎样表示正比例关系?

5.成正比例的量具备哪两个条件?1.引导学生完整地说说表中总价和数量成什么关系。

2.教师相机板书正比例的关系式。

3.引导学生提炼出成正比例的两个条件。

四、分层练习,内化提升(预设11分钟)

1.完成第63页“练一练”。学生先独立思考并作出判断,再说出判断理由。

2.做练习十三第1—3题。第1、2题,学生先算一算,想一想,再交流汇报。第3题学生先画出放大后的图形,计算它们的周长和面积,再思考题中的两个问题。

3.学生举例并说明理由。

先小组交流,然后全班交流。

4.判断并说理。“小张跳高的高度和他的身高”成正比例。

1.引导学生有条理地说明判断的思考过程。

2.通过讨论使学生进一步明白:只有当相关联的量中每一组对应数的比值一定时,这两种量才成正比例。

3.生活中哪些量之间存在比例关系?我们学过的数量关系中,哪些是正比例关系?下面进行一个举例和说理比赛,各小组至少举一个正比例关系的例子,并说明理由。组织学生“举例及说理”交流。

4.老师也举了一个正比例的例子,请大家和我作一辩论。

小张跳高的高度和他的身高。让学生应用正比例的意义,尝试着判断数量之间的关系,是对正比例意义学习的强化,还培养了学生的应用意识。

1.学生独立作业,教师巡视,个别辅导差生。

2.学生完成作业后,反馈矫正。

3.引导学生自我评价课堂学习表现。

教学反思

我是这样预设的,以例1为导路线,通过说、想、听等环节刺激学生的感觉器官,“试一试”完全尊重学生的自主权,根据学习菜单让学生独立完成,讲练结合,尽量做到老师少讲、精讲,时间控制在(15分钟)左右,学生主栽着整个课堂。苏霍姆林斯基曾说过:“在人的内心深处,都有一种根深蒂固的需要,就是希望感到自己是一个发现者、研究者、探索者,而在儿童的精神世界中这种需要特别强烈。”上完这节课,我更加深刻的体会到这一点:学习活动的主体是学生,开放型的数学教师不仅关注学生的智慧生命,还关注学生的情感价值生命。我深信本节课的后半部分,通过学生自己探索、研究、发现、人人练习的过程,体验到成功的喜悦。

比例的认识二教案篇2

1.关注教学情境的创设。

建构主义学习理论认为:学习是学生主动的建构活动,学习应与一定的情境相结合。在实际情境下进行学习,可以激发学生学习的愿望。基于以上认识,教学伊始,通过观察、比较纸面同样大小的中国地图和北京地图的不同点,使学生开始关注比例尺,进而产生想了解比例尺的欲望,并以饱满的情绪进入新知的探究环节。

2.关注学生的全面发展。

除接受学习外,动手实践、自主探究与合作交流同样是学生学习数学的重要方式。本节课为学生提供了自主探究、合作学习的机会。在自主探究的过程中,先由学生独立思考,再在小组内互相交流自己的发现和解决方法,然后全班交流。此过程让学生的个性思维能力得到了充分的发展,每个学生都能从其他学生的汇报交流中获取自己需要的信息,这样,有利于促进学生的全面发展。

3.关注解题技能的形成。

解决问题是学习数学的落脚点和归宿点,因此,提高解题能力是学生发展的需要,也是使学生牢固掌握数学基础知识和基本技能的必要途径,同时也是检验数学知识的基本形式。教学中,重视解题技能的形成,精心设置巩固习题,细心引导学生从多角度思考,及时发现共性问题并巧妙点拨,促进学生知识内化,形成技能。

课前准备

教师准备 ppt课件 地图

学生准备 地图

教学过程

1.观察比较。

(1)出示纸面和中国地图同样大小的北京地图。(挂图)

(2)观察、交流。

这两幅地图有什么不同?

预设

生1:名称和内容不同,一幅是中国地图,另一幅是北京地图。

生2:比例尺不同,一幅是1∶100000000,另一幅是……(表述合理即可)

2.质疑。

同样大小的纸面,为什么一幅能表示出整个中国,而另一幅只能表示出一个城市?

(鼓励学生各抒己见,明确原因:作图时,选定的比例尺不同)

3.导入。

什么是比例尺?这节课我们就来认识它。(板书:比例尺的认识)

设计意图:通过观察、比较,引发学生的认知冲突,引起学生的深入思考,使学生带着浓厚的探究兴趣进入新知学习阶段。

⊙探究新知

1.教学教材53页例1上面的内容,了解比例尺的意义。

(1)课件出示自学提纲。

明确:

①什么叫比例尺?

②比例尺产生的原因是什么?

③比例尺有什么作用?

④比例尺是比还是尺?

⑤比例尺的文字表达式是什么?

(2)讨论、交流。

预设

生1:一幅图的图上距离和实际距离的比,叫做这幅图的比例尺。

生2:有时按照实际尺寸无法绘制平面图,这就产生了把实际距离按一定的比缩小(或扩大)的需求,因此就产生了比例尺。

生3:比例尺有放大和缩小两方面的作用。

生4:比例尺不是尺,是比。

生5:图上距离∶实际距离=比例尺或=比例尺。

2.观察实物地图(第一幅地图的比例尺是1∶100000000,第二幅地图的比例尺是),了解比例尺的两种表现形式。

(1)观察、讨论。

①第一幅地图的比例尺属于什么比例尺?它表示什么?

②第二幅地图的比例尺属于什么比例尺?它表示什么?

(2)交流、补充。

预设

生1:比例尺1∶100000000是数值比例尺,表示图上距离是实际距离的。

生2:比例尺是线段比例尺,表示地图上1 cm的距离相当于地面上50 km的实际距离。

(引导学生理解:一小格表示图上距离1 cm,0后面第一个数表示图上距离1 cm代表的实际距离是多少,单位看最后那个单位。两小格表示图上距离2 cm,0后面第二个数表示图上距离2 cm代表的实际距离是多少,单位看最后那个单位,以此类推)

(3)学习把线段比例尺改写成数值比例尺的方法。

师:你能把上面的线段比例尺改写成数值比例尺吗?

①尝试改写。

②指名板演。

比例的认识二教案篇3

目标

1.知识与技能:认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。

2.过程与方法:结合具体情境,体会比例尺产生的必要性;运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些实际问题。

3.情感、态度、价值观:体会数学与日常生活的密切联系。

重、难点

1.理解比例尺的含义。

2.能根据图上距离、实际距离、比例尺中的两个量求第三个量。

教学准备

教具准备:小黑板、中国地图一张。

学具准备:学生各自准备一张地图。

教法学法

教法:对于意义理解部分主要采用尝试法。对于运用比例尺进行相关计算时,主要用引导发现法。

学法:在老师的引导下,通过动手操作,大胆设想、自主探究的方法进行学习,必要时进行合作交流。

教学过程

一、创设情境(引入新课)

师:同学们,如果要给我们的教室画一张平面图,它应该是什么形状的?

生:长方形。

师:课前我们量过教室的长、宽各是多少?

(生:长大约9米,宽大约6米。 )

师:请大家在练习本上画出我们教室的平面图。(生画师巡视)

(以谈话的形式,从学生熟悉的教室入手,让学生先估计教室的长和宽,再尝试画出教室的平面图,这样既复习了上节课图形的放缩知识,又为下面的学习做好准备。)

师:大家画的图是长9米,宽6米吗?(不是)谁来说说是怎么画的?

(学生的答案可能有:长方形长9厘米,宽6厘米。或者是长3厘米,宽2厘米。)

师:同样画的都是我们的教室,却不一样大,大家赞成谁的画法(故意)?为什么?

(观点一:都可以,因为这两个图的比都是3:2。观点二:这两种画法一样,但画的大小不一样,一个面积是54平方厘米,一个是6平方厘米。)

师:是啊,这两个平面图,别人一看会知道我们教室的大概形状,但我们的教室不可能是长9厘米、宽6厘米,也不可能是长3厘米、宽2厘米,你能想个办法,让别人也知道我们教室有多大吗?

(生动脑想、动手写)

引导学生汇报:

(1)直接写上"教室面积大约50平方米。"

(2)在图上标出"长9米、宽6米。"

(3)标上"1厘米=1米"。

(4)1厘米怎么能等于1米呢?我认为可以写"1厘米相当于1米。"

(激发了学生的探究欲,激活了学生的思维,促使学生去动脑、动手、动口,探索解决问题的办法,同时让学生体会了比例尺产生的必要性。)

师:看来同学们很爱动脑筋,遇到问题会想办法。现在请拿出课前准备的地图,找一找看看上面有无类似的标注?通过汇报,让学生发现地图上有不同的标注。教师板书不同的标注。

(引导学生利用手中的素材,让学生自己寻找、发现和观察比例尺,从而对学生进行学习方法的指导。)

二、意义建构(认识比例尺)

1.介绍各种比例尺的名称。

师:在地图上这些都叫做比例尺。根据板书教师介绍数字比例尺、文字比例尺、线段比例尺。

2.认识比例尺。

如:师问比例尺1:600000是什么意思?

生:就是图上1厘米的长度代表现实中的600000厘米。

师:比例尺1:230000是什么意思?

生:就是地图上1厘米的距离相当于现实中的230000厘米的距离。

师:同学们讲得都对,那到底什么是比例尺?

引导得出:

1.比例尺就是一种可以把实际距离放大或缩小的计量单位。

2.我认为比例尺就是图上长度比上现实中长度。

3.图上画的长度与现实距离的比。

4.图上长度与实际距离的比。

师:(规范学生语言)对,比例尺就是图上距离与实际距离的比。

板书:比例尺=图上距离/实际距离

由上列公式并推导出:图上距离=比例尺x实际距离

实际距离=图上距离/比例尺

(让学生按自己的理解用自己的语言充分描述什么是比例尺,教师再规范语言,这样,一促进了学生思考,二促进了思维外显,三促进了交流。)

三、实际应用(比例尺的应用)

1.出示小黑板(笑笑家平面图)

师:这是笑笑家的平面图。要求笑笑的卧室的实际面积是多少,需要知道哪些条件?(卧室实际的长和宽)怎么解决?

2.学习课本第30页内容。

(1)学生自己阅读。

(2)学生动手测量笑笑家的平面图的图上距离,计算出笑笑卧室的实际面积。先小组内交流自己的想法,然后全班交流。

(3)独立算出笑笑家总面积,再全班交流。

(4)先让学生理解题意,再独立思考、解决,全班交流。

(5)先尝试解决,再全班交流。

3.谁帮老师算算小黑板上的图是按比例尺多少来画的?求出比例尺并标注。

4.师:刚才我们画的教室平面图,你现在有办法让别人知道我们教室有多大了吗?

指导学生在画的长是9厘米、宽是6厘米的图上加上了"比例尺1:100"。

在画的长是3厘米、宽是2厘米的图上加上"比例尺1:300"。

5.完成第31页"试一试"第1题、"练一练"第一题。

四、课堂小结

师:通过本节课的学习,你有什么收获?还有什么问题吗?

认识比例尺

1、创设情境,让学生明确比例尺的用途。

由于学生在生活中对比例尺认识较少并且感受枯燥,所以我在课前拍摄学生照片,利用信息技术做成缩小或扩大的效果,课上展示让学生观察自己照片的变化。接着又介绍现实生活当中,根据需要有时要把实际距离缩小或扩大若干倍以后再画到图纸上的例子。如缩小实例有:中国地图、某个学校平面图。扩大实力有:手表图。通过这些情境的创设,让学生明确比例尺的用途。

2、通过观察、测量、设计平面图的体验过程,使学生理解比例尺的意义。

在学生发现生活中缩小与扩大例子的基础上,我组织学生当设计师进行测量教室周围物品、设计平面图,在体验中发现实际距离长和宽同时缩小相同的倍数就得到了图上距离,进一步引导学生又发现自己画的平面图的图上距离长和宽与实际距离长和宽的比也是相同的,通过说一说对课桌面1比10的理解,抓住了比例尺的意义进行教学。然后又强调了比例尺图上距离、实际距离一般用厘米做长度单位及统一单位的问题。最后,学生计算自己设计平面图的比例尺并说明其意义,更深的理解了比例尺的意义。

3、联系生活实际,让学生在实践中运用。

数学来源于生活,又作用于生活。课堂教学应该体现小课堂,大社会的理念,为此,在学生充分理解了比例尺的概念后,我创设了春游情境给学生看图片和地图,求比例尺和实际距离。在布置课外作业时,我又力求体现了开放性强,联系学生生活实际的特点,让他们调查数据求图上距离并画出来。这些设计培养了学生学数学,用数学的意识,体会到了数学的内在价值。

比例的认识二教案篇4

教学目标:

1、知识与技能:使学生理解比例尺的意义,学会求比例尺、实际距离和图上距离。

2、过程与方法:使学生经历比例尺产生过程和探究比例尺应用的过程,提高学生解决实际问题的能力。

3、情感态度与价值观:结合具体情境,使学生体验到数学与生活的密切联系,进一步激发学生学习数学的兴趣。

教学重点:

理解比例尺的意义,根据比例尺的意义求比例尺、实际距离和图上距离。

教学难点:

运用比例尺的有关知识,学会解决生活中的一些实际问题。

教学准备:多媒体课件。

教学过程:

一、展示目标,引入本课。

二、探究新知,意义建构

1、看一看

下面几幅地图的比例尺分别是多少。①中华人民共和国这幅地图的比例尺是多少?(1:6000000)②安庆市这幅地图的比例尺是多少?(1:2500000)③笑笑家的平面图按照一定的比例画在纸上,这幅平面图的比例尺是多少?(1:100)

2、说一说

(1)比例尺1:100表示什么意思呢?

生:图上1厘米长的线段表示实际距离100厘米。

(2)在比例尺1:20xx的地图上,图上距离1厘米,表示实际距离(20xx)厘米。

(3)在比例尺1:40000的地图上,实际距离是图上距离的(40000)倍。

3、议一议

(1)什么是比例尺呢?

图上距离和实际距离的比,叫做比例尺。

(2)比例尺怎样表示呢?

比例尺=图上距离:实际距离或比例尺=图上距离/实际距离(板书:比例尺=图上距离:实际距离:)

(3)比例尺有什么特征呢?

①比例尺与一般的尺子不同,它是一个比,不带计量单位;②图上距离和实际距离的单位是统一的;③比例尺的前项,一般应化简成“1”,如果写成分数的形式,分子也是“1”。

?意图】数学概念不是老师灌输给学生的,而是在学生有了感性认识之后,自己总结和概括出来的,自己发现特征的,不仅知其然,还要知其所以然,学生只有经历知识和概念的形成过程,才能真正理解。

三、拓展延伸,巩固新知

1、有时,比例尺的图上距离比实际距离大。一个精密零件的长度只有3.5毫米,画在一张图纸上是70毫米,这幅设计图纸的比例尺是多少?

70:3.5=700:35=20:1

答:这幅设计图纸的比例尺是20:1。

2、有的地图上的比例尺用线段来表示。小明家在学校的正西方,到学校的实际距离是900米。你有办法找到小明家在图上的位置吗?1厘米相当于实际距离300米。(在学校正西方向900米。)

3、这位老师从广州坐飞机到北京开会,实际距离是多少千米呢?

32×6000000=192000000(厘米)192000000厘米=1920(千米)

答:广州到北京实际距离是1920千米。

五、总结新课,整理知识

通过今天的学习,你有什么收获呢?

板书设计:比例尺

比例尺=图上距离:实际距离

实际距离=图上距离×1厘米表示的实际距离

图上距离=实际距离÷1厘米表示的实际距离

比例的认识二教案篇5

?教学目标】

1.使学生理解比例的意义,能应用比例的意义判断两个比能否成比例。

2.在比的知识基础上引出比例的意义,结合实例,培养学生将新、旧知识融会贯通的能力。

3.提高学生的认知能力。

?教学重点】

比例的意义。

?教学难点】

找出相等的比组成比例。

?教学方法】

引导法。

?学习方法】

自主探究。

?教具准备】

ppt课件

?教学过程】

一、旧知铺垫

1.什么是比?

(1)一辆汽车5小时行驶300千米,写出路程与时间的比,并化简。

(2)小明身高1.2米,小张身高1.4米,写出小明与小张身高的比。

2.求下面各比的比值。

12 :16 1/3 :2/5 4.5 :2.7 10 :6

二、探索新知

1.用ppt课件出示课本情境图。

(1)观察课本情境图。(不出现相片长、宽数据)

①说一说各幅图的情景。

②图中图片有什么相同之处和不同之处?

(2)你知道这些图片的长和宽是多少吗?

(3)这些图片的长和宽的比值各是多少?

a.6 ∶4= b.3∶2= c.3∶8 =

d.12∶8= e.12∶2=

(4)怎样的两张图片像?怎样的两张图片不像?

①d和a两张图片,长与长、宽与宽的比值相等,12∶6=8∶4,所以就像。

②a长与宽的比是6∶4,b长与宽的比是3∶2,6∶4=3∶2,所以就也像。

2.认一认。

图d和图a两张图片,长与长、宽与宽的比值相等,图a和图b两张图片长和宽的比值相等。

板书:12∶6=8∶4 6∶4=3∶2

(5)什么是比例?

板书:表示两个比相等的式子叫做比例。

“从比例的意义我们可以知道,比例是由几个比组成的?这两个比必须具备什么条件?因此判断两个比能不能组成比例,关键是看什么?如果不能一眼看出两个比是不是相等的,怎么办?”

比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。

(6)比较“比”和“比例”两个概念。

上学期我们学习了“比”,现在又知道了“比例”的意义,那么“比”和“比例”有什么区别呢?

比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。

(7)找比例。

在这四副图片的尺寸中,你还能找出哪些比可以组成比例?学生猜想另外两副图片长、宽的比值。求出副图片长、宽的比值,并组成比例。

如:3∶2 =12∶8 6∶4= 12∶8

3.右表是调制蜂蜜水时蜂蜜和水的配比情况,根据比例的意义,你能写出比例吗?

(1)什么样的比可以组成比例?

(2)把组成的比例写出来。

(3)说一说你是怎么写的,一共可以写多少个不同的比例。

三、课堂练习

1.⑴分别写出图中两个长方形长与长的比和宽与宽的比,判断这两个比能否组成比例。

⑵分别写出图中每个长方形与宽的比,判断这两个比能否组成比例。

2.哪几组的两个比可以组成比例?把组成的比例写出来。15∶18和30∶36 4∶8和5∶20 1/4∶1/16和0.5∶2 1/3∶1/9和1/6∶1/18

四、课堂小结。

(1)什么叫做比例?

(2)一个比例式可以改写成几个不同的比例式?

?板书设计】

比例的认识

12∶6 = 8∶4

内项

外项

表示两个比相等的式子叫做比例。

比例的认识二教案篇6

本节内容是在比的基础上教学的,教材首先说明为什么要确定图上距离与实际距离的比,明确它的意义,并给出比例尺的概念,再结合两幅地图比例尺,介绍数值比例尺和线段比例尺,又通过一个机器的放大图纸,让学生认识把实际距离放大的比例尺如何表示。最后说明为了计算方便,通常把比例尺写成前项或后项为1的比。例1教学线段比例尺改写成数值比例尺,为后面比例尺的计算作铺垫。

教学目标

1、知识与技能目标:联系学生的生活实际,理解比例尺的意义。根据比例尺的意义解决实际问题。

2、过程与方法目标:在师生、生生的交流活动中,体会比例尺在实际生活中的运用。结合实际,经历提出问题、分析问题、解决问题的过程,初步学会数学的思维方式,培养问题意识和解决问题的能力。

3、情感态度目标:让学生经历和体验用所学的知识解决实际生活中问题的乐趣,感受到比例尺的实用性和科学的探索方法,培养学生读图、用图以及小组合作的意识,增强学好数学的信心。培养学生热爱家乡,合作学习的情感。

教学重点:

能按给定的比例尺求相应的实际距离。

教学难点:

比例尺在生活实际中的运用

教学过程:

一、复习引入:

1 、复习比例尺的意义:

刚才老师了解到同学们的五一安排非常丰富,其实在我们学校周围也有许多美丽的景点。老师给同学们带来了一幅地图,你能看到什么?还能看到什么?(观察的非常细致)比例尺1:10000你是怎么理解的?你还了解比例尺的哪些知识?

预设生1:图上一厘米表示实际中的一万厘米,实际距离是图上距离的一万倍。

2:图上距离/实际距离=比例尺。(板书)

3:同样的知道(比例尺)、(图上距离))我们就可以求(实际距离)

那么知道 (比例尺)、(实际距离)我们就可以求(图上距离)

也就是说知道其中的两个量,我们就可以求出第三个量.()

2、揭示课题。

大家对比例尺有了深刻的了解,其实比例尺在我们生活中有着广泛的应用。今天,我们就一起来研究比例尺的应用。(贴出课题)

二.教学求实际距离.

1、求东门小学到铁塔寺的实际距离。

下面,我们就带上比例尺,进行一次地图上的旅行吧。现在我们从东门小学出发到铁塔寺。

(1)出示:

仔细观察所以信息,你能提出哪些数学问题?

预设一:生提:图上距离是多少? (测量)

预设二:从东门小学到铁塔寺实际距离大约多少米?(评:真了不起,这个问题很有价值,我们可以共同研究一下!)

仔细观察所有信息与问题, 要求从东门小学到铁塔寺的实际距离,我们就必须先知道什么? 老师给同学们也提供了同样的地图,请你想一想、量一量、算一算,求出从我们东门小学到铁塔寺的实际距离。

生做,师巡视

汇报交流:

师:谁愿意来说说你的想法?

方法一:方程。

说说你为什么这样列式?

使用这种方法还有什么要提醒大家的吗?

刚才我们根据比例尺的数量关系,利用比例尺的意义直接解决了这个问题。

其他同学还有不同方法吗?

方法二:生:“4÷1/10000”求出的是实际距离。我们组是这样想的:因为“图上距离∶实际距离=比例尺”,在这里图上距离是比的前项,相当于除法中的被除数;实际距离是比的后项,相当于除法中的除数;比例尺相当于图上距离和实际距离的商。而“除数=被除数÷商”,所以可以推出“实际距离=图上距离÷比例尺”,我们组就是根据这种关系求实际距离的。

这种方法也不错。

方法三:我们组是这样想的:根据比例尺“1∶10000”推出实际距离是图上距离的10000倍,所以从学校到铁塔寺的实际距离可用“4×10000”求出,求出结果之后,因为单位不统一,所以还要把实际距离的单位转化为“米”,随即问:怎么列式?(教师板书)

2、比较几种算法。

同学们,很会观察,很会思考。从不同角度,想出多种方法解决了同一个问题。

这些方法中,你更欣赏哪一种?为什么?

教师小结:我们的数学就是那么奇妙,在变与不变之间存在着一定得规律。虽然方法看似不同,但都是利用比例尺的意义来灵活解答的。

3、练习:先量出铁塔寺到济宁人民公园的图上距离,再算出实际距离大约是多少米?

游览了古老的铁塔寺,让我们再一起去从新修建的济宁人民公园逛逛!

仔细观察所有信息,

想一想,要求从铁塔寺到济宁人民公园的时间?我们必须先求什么?

运用我们刚才研究的知识能解决这个问题吗 做在练习本上。

学生独立做,师巡视

生1:(方程)师:怎么想的?

生2:计算

师小结:同学们真了不起,自己解决了这个问题。根据比例尺的意义解决了地图旅行中的问题。其实在我们生活中比例尺的应用还有很多,看一下这两道题,先仔细读题,想一想,做在练习本上。

三、巩固练习。

1、基本练习

出示:按1:1000的比例尺做出的邮电大楼模型,高为16.8厘米,邮电大楼的实际高度是多少米?师读题

独立完成。

按10:1的比例尺放大的手表截面图,图中的表盘的直径是20厘米,这个表盘的实际直径是多少厘米?

学生独立解答; 汇报交流。

2、提高练习:

课前的谈话中,老师了解到同学们有的想到济宁周边游玩。

出示: 你能帮助他们解决这个问题吗?

想一想,再做出来。

生读

汇报:两种方法

观察这两种方法,你想说些什么?

3、老师还了解到,有的同学想到省内给地走走,看这是我们山东省的一幅地图。 自己设计出你的出游路线,算一算行程。

四、回顾小结:

在我们课本八十七页,运用我们今天所学知识就能帮助你更加科学合理的安排你的旅程。

祝愿大家能够渡过一个愉快的五一假期。

比例的认识二教案篇7

教学内容:

p62~p63页的例1及相应的“试一试”“练一练”。完成练习十三第1~3题。

教学目标:

1.使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。

2.让学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。

3.让学生进一步体会数学和日常生活的密切联系,增强从生活现象中探索数学知识和规律的意识。

教学重难点:

重点:结合实际情境认识成正比例量的特点,加深对正比例量的理解。

难点:能跟据正比例的意义判断两种相关联的量是否成正比例。

教学准备:

课件

课时安排:

第一课时

课前设计:

一、导入。

谈话:通过将近六年的数学学习,我们已经了解了一些数量之间的关系,例如行程问题中速度、时间、路程之间的关系,你知道这三个量之间的关系吗?再如购物问题中单价、数量、总价之间的关系,你知道这三个量之间的关系吗?这个单元我们要用一种新的观点,更深入地研究数量之间的关系,什么观点呢?事物变化的观点,让一些量变起来,从变化中发现规律。

二、教学例1。

1.出示例1的表格。提问:表中列出了哪两种量?(板书:时间和路程)观察表中的数据,哪一种量的变化引起了另一种量的变化?你是怎么看出来的?

指名回答。

谈话:时间变化,路程也随着变化,我们就说,路程和时间是两种相关联的量。(板书:路程和时间是两种相关联的量。)“关联”是什么意思?为什么说路程和时间是两种相关联的量?

2.我们已经知道路程和时间是两种相关联的量。还要进一步研究,这两种量的变化有什么规律?

3.仔细观察表中的数据,这两种量在变化中有没有什么不变的规律呢?现在小组内讨论,再在班内交流。(有的学生可能会发现两种量中所对应的两个数的比值不变)

提问:观察这些比值,你发现了什么?这个比值80表示什么?(速度)你能用一个式子来表示上面的规律吗?根据学生回答,板书:=速度(一定)

4.讲述:通过观察和计算,我们对路程和时间的关系有两点发现:第一点路程和时间是两种相关联的量,也就是时间变化,路程也随着变化;第二点路程和对应的时间的比的比值一定(也就是速度一定)。具备了这两个条件,我们就可以得到结论:行驶的路程和时间成正比例;行驶的路程和时间成正比例的量。(板书:路程和时间成正比例,路程和时间是成正比例的量)

5.谈话:这就是这节课我们所学习的正比例。(板书课题)请阅读课本第62页的一段文字,各自默读,边读边画。

再指名读。提问:你能读懂吗?

在这题中,哪个量和哪个量是成正比例的量?同桌互相说一说为什么时间和路程是成正比例的量,并在全班交流。

三、教学“试一试”

1.出示“试一试”,学生自由读题。

2.要求学生根据已知条件把表格填写完整。

3.学生根据表中数据,先尝试独立完成表格。下面的四个问题,然后和同桌交流。

4.全班交流。板书:总价和数量是相关联的量,=单价(一定),总价和数量成正比例。

5.让学生根据板书完整地说一说铅笔的总价和数量成什么关系。

四、用含有字母的式子表示正比例关系。

1.比较例题和“试一试”的相同点。

提问:观察上面的两个例子,它们有什么相同的地方呢?

2.谈话:如果用字母和分别表示两种相关联的量,用表示它们的比值,正比例关系可以用怎样的式子来表示呢?

谈话:这是正比例关系式表达式,对这个式子要这样理解:和表示两种相关联的量,比的比值一定,我们就说和成正比例。

五、巩固练习

1.完成第63页“练一练”。

学生独立思考并作出判断,要用完整的语言说出判断的理由。

2.完成补充习题。

一辆自行车在公路上行驶,行驶的时间和路程如下表。

时间/时123456……

路程/千米355060708590……

这辆自行车行驶的时间和路程是相关联的量吗?成正比例吗?为什么?

先独立思考,再和同桌说一说。

全班交流,并讨论:成正比例的量必须符合哪些条件?

3.完成练习十三第1题。

(1)学生按题目要求尝试独立完成。

(2)全班交流,重点让学生说说为什么碾米机的工作时间和碾米数量成正比例,引导学生完整地说出判断的思考过程。

4.完成练习十三第2题。

(1)让学生独立判断,并说明理由。

(2)谈话:如果去掉“同一时间”这个前提,物体的高度和影长还成正比例吗?

5.完成练习十三第3题。

(1)说一说:将图中的正方形按怎样的比放大,放大后的正方形的边长各是几厘米?

(2)画一画:在书上画出放大后的图形。

(3)算一算:算出每个图形的周长和面积,并填在表中。

(4)讨论表格下面的两个问题。谈话:两种量若要成正比例必须是相关联的量,但相关联的量不一定成正比例,只有当两种相关联的量的比值一定时,它们才成正比例。

六、全课。

提问:通过这节课的学习,你有什么收获?

板书设计

认识成正比例的量

时间和路程路程和时间是两种相关联的量。

=80=80=80……

=速度(一定)

路程和时间成正比例,路程和时间是成正比例的量。

总价和数量是相关联的量,=单价(一定),总价和数量成正比例

=(一定)

比例的认识二教案7篇相关文章:

小学数学人民币的认识教案5篇

大班认识零的教案最新8篇

0到10的认识教案模板6篇

认识数字的幼儿教案5篇

大班认识零的教案模板8篇

幼儿认识光的教案6篇

一年级1到5的认识教案6篇

中班认识手的教案6篇

0-9的认识教案通用6篇

幼儿认识光的教案优秀5篇

比例的认识二教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
109037