平行四边形面积教案最新8篇

时间:
couple
分享
下载本文

教师若能提前编写教案,将有助于课堂教学的顺畅进行,出色的教案为教师课堂教学提供了详细的指导,下面是写文书吧小编为您分享的平行四边形面积教案最新8篇,感谢您的参阅。

平行四边形面积教案最新8篇

平行四边形面积教案篇1

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学重点:

1、掌握平行四边形的面积计算公式。

2、会计算平行四边形的面积。

教学难点:理解平行四边形面积公式的推导过程.

教具准备:课件,平行四边形的纸片。

学具准备:学习卡,每个学生准备一个平行四边形。

教学过程

一、导入

1.观察主题图(课件出示),让学生找一找图中有哪些学过的图形。

2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

板书课题:平行四边形的面积

二、平行四边形面积计算

1.用数方格的方法计算面积。

(1)用多媒体出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中。

(2)独立完成。

(3)汇报结果。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

(1)引导:如果不用数方格,那能不能计算出平行四边形的面积呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:是不是这样计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?(小组讨论)

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

4.出示例1。读题并理解题意。

三、巩固和应用

1、判断,并说明理由。

(1)两个平行四边形的高相等,它们的面积就相等( )

(2)平行四边形底越长,它的面积就越大( )

2、计算。

四、体验

今天,你学会了什么?怎样求平行四边形的面积?平行四边形的面积计算公式是怎样推导的?

五、作业:练习十五第1、2题。

六、板书设计

平行四边形面积的计算

长方形的面积=长×宽

平行四边形的面积=底×高

s=ah

?平行四边形的面积》教学反思

本节课是学生在已掌握了长方形面积的计算和平行四边形各部分特征的基础上进行平行四边形的面积的计算的,我能根据学生已有的知识水平和认知规律进行教学。本节课的教学目标是学生在理解的基础上掌握平行四边形面积的计算公式,能正确计算平行四边形面积,并且通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透转化、剪切和平移的思想,并培养学生的分析,综合,抽象概括和动手解决实际问题的能力。重、难点是平行四边形面积计算公式的推导,使学生切实理解由平行四边形剪拼成长方形后,长方形的长和宽与平行四边形底和高的关系。

一、重在每个孩子都参与

本节课教学我充分让每个学生都主动参与学习。首先,通过财主分地的故事导入,让学生大胆猜测:长方形的地和平行四边形的地哪块大?然后让他们各自说明理由,可以用不同的方法来证实自己的观点。有的孩子提出用数方格的方法,还有的孩子用剪切和平移的方法,然后再进行逐步展开。全班孩子在数格子的时候会发现问题,平行四边形的格子没有那么好数,不满1格的都只能算半格,虽然数出的答案一样,但是不太精确,而且孩子们也意识到,在现实生活中,比较地的大小是不可能用数格子的方法来进行的。所以我们着重讲转换的方法。让每个学生自己动手剪拼,转化成已经学过的图形。引导学生参与学习全过程,去主动探求知识,强化学生参与意识,引导学生运用各种不同的方法,通过割补、平移把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自己操作——转化——推导的过程叙述出来,以发展学生思维和表达能力。这样教学对于培养学生的空间观念,发展解决生活中实际问题的能力都有重要作用。

二、渗透“转化”思想,让所积累的经验为新知服务

“ 转化”是数学学习和研究的一种重要思想方法。我在教学本节课时采用了“转化”的思想,现引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,接着引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透“转化”的思想方法,充分发挥学生的想象力,培养了创新意识。学生把平行四边形转化成长方形的方法有三种,第一种是沿着平行四边形的顶点做的高剪开,通过平移,拼出长方形。第二种是沿着平行四边形中间任意一高剪开,第三种是沿平行四边形两端的两个顶点做的高剪开,把剪下来的两个小直角三角形拼成一个长方形,再和剪后得出的长方形拼成一个长方形。这节课学生只是拼出两种,另外一种情况(沿中间高剪开)学生没拼出来,我只好自己演示出来,让学生了解,拓宽空间思维想象。接着,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形到长方形的转化过程,把三种方法放在一起,让孩子们讨论比较,转化后的图形和原图形有什么样的关系,并以小组为单位组织语言,组长汇报。这样就突出了重点,化解了难点。通过本节课的学习让孩子们了解到转化的思想很重要,在以后推导三角形、梯形面积的计算公式时可以提供方法迁移。

虽然本节课能以学生为主体,教师主导,但后半部分的教学还存在着教师不敢完全放手的现象,课堂上有效的评价语言在本节课中也体现不够完善等等。教学是一门有着缺憾的艺术。做为教者的我们,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改进,我们的课堂就会更加精彩!

平行四边形面积教案篇2

?教材分析】

本课为人民教育出版社《义务教育数学五年级标准实验教材》第一课第五单元“平行四边形区域”。平行四边形面积的计算是基于学生对矩形和正方形面积计算公式的掌握和灵活运用,以及对平行四边形特点的理解。在教材的编排上,注重让学生体验知识探索的过程,使学生不仅掌握面积计算的方法,而且参与面积计算公式的推导过程。在操作中,他们积累了基本的数学思维方法和基本的活动经验,完成了新知识的建构。本课首先通过具体情况,提出了计算平行四边形面积的问题。这样安排的目的是让学生面对一个新的问题,思考如何解决它,让学生觉得有必要学习新的知识;第二,培养学生独立操作和探索,使学生能够找到问题的解决方案;最后,让学生总结计算平行四边形面积的基本方法。根据学生不同的剪切方法,组织学生讨论这些剪切方法的共同特点,比较矩形与平行四边形的关系,推导出平行四边形面积的计算公式。

(教学目标)

知识与能力目标:使学生运用数的平方法和填充法,探索平行四边形面积的计算公式,初步感受变换思想;使学生掌握平行四边形面积的计算公式,并能正确地利用该公式计算出平行四边形的面积。

过程和方法目标:通过操作、观察和比较,培养学生的空间概念,培养学生运用转化思维方法解决问题的能力;创造独立和谐的探究情境,使学生在不断的尝试中自我展示、自我激励、体验成功,激发求知欲,陶冶情操。

情感态度与价值目标:通过活动,培养学生的合作意识和探索创新精神,体验数学知识的奇妙。

?学习情况分析】

平行四边形面积教学是在学生掌握并灵活运用矩形面积计算公式的基础上,了解平行四边形的特点而进行的。此外,对这部分知识的学习和应用,将为学生学习后的三角、梯形等平面图形的绘制打下良好的基础。由此可见,本课程是促进学生空间概念发展、渗透转化、等体积变形等数学思维方法的重要环节。学好这一部分对于解决生活中的实际问题有着重要的作用。这节课,让他们练习,边做边学,体验画平行四边形面积公式的过程,让孩子们认识到数学就在身边,培养学生的发散思维,进一步激发学生的学习思维,进一步激发学生学习数学的热情。

?教学重点】掌握平行四边形面积的计算公式。

?教学难点】平行四边形面积计算公式的推导过程。

?教学辅助工具】两个相同的平行四边形、不规则图形、黑板、剪刀、多媒体、课件。

(教学过程)

首先,创建情景并引入主题。

1、 游戏介绍:小魔术师。老师展示不规则的图形。

老师:你能直接算出这个图形的面积吗?

老师:你能算出这个图形的面积吗?告诉我怎么用它?

老师:现在变成什么样了?你能算出这个图形的面积吗?如何计算矩形的面积?

2、 小结:刚才同学们把不平整的部分剪掉,然后移动它来填补空白,然后把不规则的图形转换成学习矩形,这是一种重要的数学思维方法——变换。将未知图形转换为可识别的图形。什么改变了转换后的图形?什么是相同的?(形状变化,面积不变)

(设计思维:“暖过去”是课堂教学开始的重要环节,起着承上启下的作用。通过提出复习问题,激发学生对已有知识的复习,拓宽学生的学习渠道

读书破万卷下笔如有神,以上就是一秘范文为大家带来的6篇《平行四边形的面积教案》,希望对您有一些参考价值,更多范文样本、模板格式尽在一秘范文。

平行四边形面积教案篇3

教学目标

1、使学生经历探索平行四边形面积计算公式的推导过程,掌握平行四边形的面积计算方法,能应用平行四边形的面积公式解决相应的实际问题。

2、培养学生的观察操作能力,领会割补的实验方法;培养学生灵活运用知识解决实际问题的能力;培养学生空间观念,发展初步的推理能力。

3、培养学生合作意识和严谨的科学态度,渗透转化的数学思想和事物间相互联系的辩证唯物主义观点。

教学重难点

教学重点:探索并掌握平行四边形的面积计算公式。

教学难点:理解平行四边形的面积计算公式的推导过程。

教学过程

一、巧设情境,铺垫导入

师:(在实物投影仪中出示教具,如下图)这是一个长方形框架,它的长是8厘米,宽是5厘米,它所围成的长方形面积是多少?你是怎样想的?

(根据学生的回答,教师适时板书:长方形的面积=长×宽)

师:如果捏住这个长方形的一组对角,向外这样拉,(教师演示,如下图)同学们看看,现在变成了什么图形?(平行四边形)

师:这样一拉,形状变了,面积变了吗?

师:(对认为面积不变的同学质疑)你认为平行四边形的面积是怎样计算的?

(平行四边形的面积等于相邻两条边的乘积)

师:究竟这个猜想是否正确,下面我们一齐来验证一下就知道了。

请同学们用数方格的方法来算出这个平行四边形的面积,(教师把拉成的平行四边形框架放在方格纸上,用实物投影仪显示,如下图)数的时候要注意,每个小方格的面积是25px2,不满一格的当半格计算。(通过学生数一数,得出这个平行四边形的面积是800px2,使学生明确拉成的平行四边形面积变少了,相邻两条边的乘积不能算出平行四边形的面积。)

师:看起来,用相邻的两条边相乘不能算出平行四边形的面积,那么,平行四边形的面积应该怎样计算呢?这节课就让我们一起来探讨平行四边的面积计算吧。(板书课题:平行四边形的面积)

[评析:利用长方形框架巧设情境,复习长方形的面积计算方法,为下面平行四边形的面积公式推导作铺垫,然后把长方形拉成平行四边形,向学生提问:面积变了吗?引起学生的好奇与争议,以此为契机,再用数方格的'方法来验证平行四边形的面积等于相邻两条边的乘积是错误的,激发学生进一步探讨平行四边形的面积计算方法的求知欲望。]

二、合作探索,迁移创造

1、图形转换

师:(教师展示一个平行四边形卡片)这是一个平行四边形,我们不知道它的面积如何计算,能不能把它转换成我们已学过的图形呢?(能)可以转换成什么图形?(长方形)

师:四人小组合作,用课前准备好的平行四边形卡片和剪刀,把平行四边形剪拼成长方形。(学生动手操作)

2、探讨联系

师:同学们真能干,很快就把平行四边形转换成了长方形,请大家认真观察,转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽有怎样的联系?(小组讨论交流,引导学生边动手操作边观察,从中得出转换前平行四边形的面积、底和高分别与转换后的长方形的面积、长和宽相等。)

师:(结合黑板上的图形说明)这个长方形的面积与这原来的平行四边形面积相等,长方形的长与原来平行四边形的底相等,长方形的宽与原来平行四边形的高相等。

3、推导公式

师:我们知道长方形的面积等于长乘宽,那么平行四边形的面积可以怎样计算呢?(平行四边形的面积等于底乘高)

(教师根据学生回答板书:平行四边形的面积=底×高)

师:如果用s表示平行四边形的面积,a表示底,h表示高,怎样用字母来表示这个公式?(引导学生说出用字母表示公式)

(教师根据学生回答板书:s=ah)

4、验证公式

师:究竟这个公式是否正确?下面我们来验证一下,(把导入时拉成的平行四边形框架放在方格纸上,用实物投影仪显示)请同学们利用刚才推导出来的平行四边形面积公式来计算这个平行四边形框架的面积。(先让学生明确这个平行四边形的底和高各是多少,再列式计算。)

师:计算出来的结果和我们数方格得出的结果一样吗?(一样)

师:这证明我们所推导出来的平行四边形面积公式是正确的。

5、提问质疑

师:刚才同学们的表现都不错,下面请大家阅读课本80—81页,还有什么疑问,请提出来。(学生阅读课本和质疑)

[评析:在这个环节中,通过学生动手操作和合作交流,使学生主动地去探索和发现平行四边形面积的计算方法,最后让学生验证公式,这一过程前后呼应,浑然一体,使学生的主体地位发挥得淋漓尽致,不仅点燃了学生创新的火花,而且培养了学生严谨的科学态度。]

三、层层递进,拓展深化

1、算一算

师:(课件出示如下图)算一算停车场里两个不同的平行四边形停车位的面积各是多少。(学生动手算一算,再让学生汇报。)

2、选一选

师:(课件出示,如下图)要计算这个平行四边形的面积,下面几个选择,你选哪个?为什么?(引导学生理解底和高必须是相对应的。)

3、画一画

师:请同学们在方格纸上画出一个面积是24 cm2的平行四边形,看谁画得又对又快。(先向学生说明这个方格纸中的每个小方格的边长都是25px,要求学生想清楚该怎样画,再动手画一画。)

4、想一想

师:(课件出示如下图)学校里有一块草地,想在草地的一边修一条小路通向另一边,下面的有三种设计方案,你认为哪种设计方案的面积最小?为什么?(先小组讨论,再让学生自由地发言,引导学生从平行四边形的面积计算方法来思考问题。)

师:你发现了什么规律?(引导学生理解等底等高的平行四边形面积相等。)

[评析:练习设计由浅入深,层层递进,紧扣课题,不但使学生所学的知识进一步深化,而且使学生在练习中思维得以发展,创新素质得到锤炼。]

四、总结全课,提高认识

反思一下刚才我们的学习过程,你有什么收获?

课后习题

做一做书上的练习题,做后认真检查。

平行四边形面积教案篇4

教学完《平行四边形的面积》这一课自己感触颇多,有成功中的喜悦,也有不足中的遗憾,总结本节课的教学,有以*会。

一、成功之处。

1、联系生活,以解决小区中实际问题贯穿全课。

本课以停车位面积大小的问题,让学生引入到对平行四边形面积计算方法的探索中,通过猜测、转化、验证等得出平行四边形面积计算公式,并运用公式去解决小区中的实际问题。整节课在实际情景中学习新知,理解新知,巩固并运用新知。所创设的生活情景取材于学生的数学现实中,使学生感到亲切、有趣,使教学活动更富有生气和活力,更能使学生体验数学来源于生活,扎根于生活,应用于生活。

2、重视学生的自主探索,让学生经历数学学习的过程。

学习任何知识的途径是通过自己的实践活动去发现,这样的发现理解最深,也最容易掌握。在教学活动中,我设计了三个层次引导学生进行探究新知,首先是让学生根据已有知识和经验大胆猜测,接着亲自动手操作,验证自己的猜想是否正确,最后演示过程,强化结果,让学生在数学活动中自然地发现平行四边形和长方形之间的关系,最后归纳出平行四边形面积计算公式。在这里我留给学生足够的时间和空间去思考、去动手,让学生同伴互助去探究、去发现、去总结,给每个学生参与数学活动的机会,学生主人翁的地位充分展现。而我则是一个引路人,是一个参与者,合作者,真正体现《数学课程标准》的新理念。

3、渗透数学方法,发展学生的数学能力。

在本节课的教学中,我注意引导学生掌握数学最本质的东西,关注数学思想和方法,培养和发展学生的数学能力,在探索平行四边形面积的计算方法时,先引导学生能不能把一个平行四边形变成一个长方形呢?通过操作,一方面启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透‚转化‛的思想方法,另一方面引导学生去主动探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,这样以数学思想方法为主线,让学生亲身体验和理解‚转化‛思想,加强了新旧知识间的联系,有助于知识的系统化。在此过程中,学生经历了数学学习的过程,不但发展了数学思维,而且提高了数学能力。

二、存在不足。

1、为了学生的思维不受限制,使孩子们的主动性得到尽可能的发挥,在探究平行四边形面积公式时,我是让学生自己发现,自己总结,但由于学生紧张,而自己的引导和激励性语言又没有及时跟上,致使个别学生操作速度慢,跟不上课堂节奏,活动氛围不活跃,这方面的组织与调控能力我还要继续加强。

2、用数方格的方法数长方形正方形的面积在前面已经学过,因此在备课中我认为学生对数长方形‘平行四边形的面积应该是轻车熟路,很快数出来,但在实际教学中发现一些学生对数平行四边形的面积方法不熟,这块内容的教学多耽误了两分钟,以致于后面的练习有些仓促。因此,备课时一定要认真备各层次的学生水平,该引导时就引导,该放手时就放手。

三、反思中的所悟。

结合新课标,如何上好数学课,当中还有许多值得自己思考的问题。通过这个课例,感悟到要上出‘活泼‘愉快’实用的课来,就要求我们教师用学生的眼光理解教材,用新课标理念处理教材,用灵活的方法调控每个环节。教学中给孩子一些问题,让他自己去找答案,给孩子一些条件,让他自己去体验,给孩子一些机会,让他自己去创新。

平行四边形面积教案篇5

教材分析

“平行四边形的面积”是本册书第五单元“多边形的面积的计算”第一小节的内容。前面学过了长方形和正方形的面积计算,平行四边形和三角形的特征及底和高的概念,几何图形的认识贯穿在整个小学数学教学中,并且是按照从易到难的顺序呈现的。所以,要使学生理解掌握好平行四边形面积公式,必须以长方形的面积和平行四边形的底和高为基础,而且这部分知识的学习运用会为学生学习后面的三角形、梯形等平面图形的面积奠定良好的基??

学情分析

1. 学生已经掌握了平行四边形的特征和长方形面积的计算方法。这些都为本节课的学习奠定了坚实的知识基础。

2. 但是小学生的空间想象力不够丰富,对平行四边形面积计算公式的推导有一定的困难。因此本节课的学习就要让学生充分利用好已有知识,调动他们多种感官全面参与新知的发生发展和形成过程。

教学目标

1.知识与技能目标:了解平行四边形面积的含义,掌握平行四边形面积的计算公式,会计算平行四边形的面积并能解决实际中的问题。

2.过程与方法目标:

(1)通过操作、观察、讨论、比较活动,让学生初步认识图形转化来计算平行四边形面积的过程。

(2)通过平行四边形面积公式推导过程的讲解,培养学生在动手操作、探索的过程中形成观察、分析、概括、推导能力,发展学生的空间观念。

3.情感目标:通过活动,激发学习兴趣,培养探索的精神,感受数学与生活的密切联系。

教学重点和难点

重点:理解掌握平行四边形的面积计算公式,并能正确运用。

难点:把平行四边转化成长方形,找到长方形与平行四边形的关系,从而顺利推倒出平行四边形面积计算公式。

教学过程

(一)情境引入,以旧探新

这是一幅街区图,上部是住宅小区,中部是街道,下部是学校的大门内外,图上的学校将是我们城关一小未来的面貌。为了使我们的学校变得更美丽,学校准备在大门前修建两个花坛,那要考虑什么实际问题呢?(修多大的花坛,也就是要计算它们的面积有多大)。(课件依次出现)

这块花坛既不是长方形也不是正方形,如何求出这块地的面积?

为了解决上面的问题我们必须知道如何计算一个平行四边形的面积,今天我们就来一起学习平行四边形的面积。(板书:平行四边形的面积)

(二)自主探究

方法一:用数方格的方法求平行四边形的面积

以前我们用数方格的方法求长方形的面积。今天,我们也用同样的方法求平行四边形的面积。(出示课前准备好的方格纸,每个方格按1㎡)

1.用方格纸制作成的平行四边形放在边长是1米的方格中,数一数占几个方格(不满一格按半格计算)平行四边形的面积就是几平方米。这块空地的面积是24平方米。

根据这个例子,让同学将书本80页下面的表格补充完整,也会发现上面的规律!

2.填表并讨论:用数方格的方法可以得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。

(1)观察上表你发现了什么?(观察得出长方形的长和平行四边形的底相等,长方形的宽和平行四边形的高相等,它们的面积也相等,)

(2)根据你的发现你能想到什么?(平行四边形的面积就等于底乘高)

(三)动手操作,验证猜想,得出结论

方法二:“割补”法:通过数方格我们发现这个平行四边形的面积等于底乘高,是不是所有平行四边形的面积都可以用底乘高来进行计算呢?这就是我们这节课要研究的中心内容:平行四边形面积的计算。

1.提出假设:能不能把它转化成我们学过的图形呢?(用割补法转化为长方形)

2.动手实验:(1)提出要求:请同学们拿出准备好的多个平行四边形纸片及剪刀,自己动手,运用所学过的割补法将平行四边形转化为长方形。那样的话我们就能不用方格就可以算出平行四边形的面积了。(在操作过程中教会学生运用了一种重要的数学方法“转化”,就是把一个平行四边形转化成了一个长方形,“转化”是一种重要的数学思想方法,在以后学习中会经常用到。)

(2)学生实验操作,教师巡视指导。

3.小组讨论:观察拼出来的长方形和原来的平行四边形你发现了什么?

(1)平行四边形剪拼成长方形后,什么变了?什么没变?(形状变了,面积没变)

(2)剪拼成的长方形的长与宽分别与平行四边形的底和高有什么关系?(长与原来平行四边形的底相等,宽与原来平行四边形的高相等。)

(3)剪拼成的长方形面积怎样计算?得出:(面积=长×宽)

(4)平行四边形的面积公式怎样表示?为什么?(平行四边形的面积=底×高)

4.全班交流推导公式:

(1)谁愿意把你的转化方法说给大家听呢?请上台来交流!

(2)有没有不同的剪拼方法?(继续请同学演示)。

研究得出:沿着平行四边形的任意一条高剪开,都可以通过平移把平行四边形拼合成一个长方形。

(3)板书平行四边形面积推导过程

(4)字母公式:在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,那么平行四边形的面积计算公式用字母表示出来就是s=ah

三、运用公式,解决实际问题

知道了平行四边形的面积公式,我们就可以利用它方便地计算平行四边形的面积了。

1.出示书上82页的1题,请大家做一做。

2.汇报交流:谁来说一说你是怎么做的?

3.强化认识:那请大家想一想,要求平行四边形的面积,我们必须知道哪些条件?(底和高,强调高是底边上的高)

四、巩固练习

1、试一试

计算下列平行四边形的面积,与同学说说你的方法。

35cm 20dm 4.8m

26cm 28dm 5m

公式: 公式: 公式:

列式: 列式: 列式:

2、我能填得准。

(1)平行四边形的面积公式用字母表示为( )。

(2)一个平行四边形的底是9cm,对应的高是4cm,面积是( )。

五、课堂总结

反思一下刚才我们的学习过程,你有什么收获?

平行四边形面积教案篇6

教学内容:

人教版实验教科书五年级数学上册第五单元。

教学目标:

1、让学生经历看、数、想、剪、移、拼、说等过程探讨平行四边形的面积公式,并能用字母表示,会用公式计算平行四边形的面积。

2、通过对图形的观察,比较和动手操作,发展学生的空间观念,渗透“转化”和“平移”的思想,体会“等积变形”的方法,并培养学生的分析,综合,抽象概括、语言表达和动手解决实际问题的能力。

3、通过活动,激发学习兴趣,培养探索精神,获得成功体验,感受数学与生活的密切联系。

教学重点:

使学生理解和掌握平行四边形面积公式并会应用。

教学难点:

理解平行四边形面积计算公式的推导过程。

教具、学具准备:

平行四边形纸片、剪刀及电脑课件、三角板。

教学流程

(一)创设情境,设疑引入

谈话:出示两个美丽的花坛(课件呈现)。

提问:请大家观察一下,这两个花坛哪一个大呢?

师:这都是你们用眼睛看的不一定准确,我们必须想其他的办法来证明,但不管用什么办法来比较它们的大小,必须知道他们的什么?它们的面积你会算吗?

然后给出长方形的长和宽让学生计算长方形的面积。

提问:那平行四边形的面积你会算吗?从而导入新课。

板书课题:平行四边形的面积

(设计意图:本环节在学生现有知识水平中无法通过计算来比较两个花坛面积的大小,从而激发学生探究知识的欲望,感受数学与生活的密切联系。)

操作探索,获取新知

1.数方格感知平行四边形和长方形之间的关系

(1)数方格,用数方格的方法来求平行四边形和长方形的面积,要求自学完成中间的格子图和表格,最后认真观察这个表格中的数据,看你发现了什么?(电脑出示)

(2)汇报交流自己的发现。

(3)提问:如果我给你一个好大好大的花坛,不用数方格的方法,你能很快地计算出平行四边形的面积吗?

小结:用数方格的方法不能满足我们的实际需要,如果我们能像长方形那样有一个计算平行四边形面积的公式就容易解决了。

(设计意图:本环节主要通过让学生用数方格的方法,初步感知平行四边形与长方形面积之间的联系,同时为下一步的探究提供思路,做好铺垫。)

2、应用“转化”思想,引入割补、平移法.

(1)小组合作探究:想办法充分利用手中的学具把平行四边形转化成已经会计算面积的图形。(这时教师巡视,了解情况)

(2)精彩展示:要求边讲边操作。

提问:为什么都要转化成长方形?

为什么一定要沿着高剪开呢?

接着电脑演示其它方法,渗透割补、平移法

(设计意图:通过让学生亲身经历把平行四边形转化成一个长方形的全过程,为下一个环节建立联系,推导公式起到了一个推波助澜的作用。同时告诉学生学会一种解题方法比做十道题都重要,教会学生“会学”。)

3、建立联系,推导公式

(1)小组合作探索:

a、原来的平行四边形转化成长方形后,什么变了?什么没变?(=)

b、拼成长方形的长与原来平行四边形的底有什么关系?(=)

c、拼成长方形的宽与原来平行四边形的高有什么关系?(=)

d、能否根据长方形的面积公式推导出平行四边形的面积计算公式?(平行四边形的面积=)

(2)交流平行四边形和长方形之间的联系:平行四边形的面积=长方形的面积;长=底;宽=高;平行四边形的面积(公式)=底×高(板书)

提问:用字母怎么表示呢?自学课本81页。

学生回答s=ah(板书)

提问:s、a、h分别表示什么呢?

提问:要计算平行四边形的面积必须知道什么?(演示不是对应的底和高),这样能求出它的面积吗?那底和高必须是什么样的关系?(对应)

(设计意图:本环节主要让学生观察,发现、比较、归纳,从具体到抽象,从感性到理性循序渐进,推导出了平行四边形面积的计算公式,充分尊重了学生的主体地位,突破了难点,解决了关键,发展了学生能力。)

(二)巩固应用,内化新知

a、前面的花坛题

b、课本82页第2题:你能想办法求出下面两个平行四边形的面积吗?

(教师巡视,收集典型的错误,强调书写格式,对应的底和高)。

(设计意图:此练习题量虽然不大,但涵盖了今天所有的知识点,具有一定的弹性,使不同的学生得到了不同的发展,从而进一步内化了新知。)

(四)课堂总结,深化新知

师:同学们,通过今天的学习,你有什么收获呢?

(设计意图:师生共同概括小结,这样会给学生一个系统、完整的印象,不但使本节课有了一个精彩的结尾,而且进一步深化了新知。)

课后反思:

通过认真反思本节课的教学,我从中认真总结了一些成功的经验和失败的教训。

●成功经验

一、注重采用“自主探究、合作交流”的学习方式。

尽可能让学生充分暴露自己的思维过程,进行思维碰撞,发挥小组集体的智慧,进一步出主意、想办法,有效解决问题,体现了数学教育的实质性价值,立足了“基本”,注重了“过程”。

二、注重数学方法和数学思想的渗透。

在本节课中,主要让学生动手操作,亲自感知,利用“割补、平移”法经历了把平行四边形转化成一个长方形的全过程,有效地渗透了“转化”的思想,从而学会了利用旧知识来解决新问题,同时使学生明白学会一种解题方法比做十道题都重要,教会学生“会学”。

三、注重运用现代教学手段辅助课堂教学。

这节课恰当地运用了多媒体课件演示,直观、生动、形象地展现了图形的转化过程及各部分之间的对应关系,充分调动了学生的学习兴趣,提高了课堂教学的效率,是其它教学手段无法比拟的。

●失败教训

一、在教学中个别地方没有给学生留有足够的思考时间。

比如:当追问“为什么要沿着高剪开呢?”这时学生回答不出来,由于担心时间不够,我提示学生想想长方形的特征,如果不急着提示,让学生结合自己转化后的图形多看看、多想想,也许学生自己就能解答。作为教师,学生能自己解决的问题,我们绝不代替。

二、教学中的细节问题注意不够。

例如,发给学生的学具“平行四边形”就忘记在四周描上一个边框,只是在课件上有所显示,从而不利于教学平行四边形与转化后的长方形之间的联系。特别在讲这些平面图形的周长时,如:教学圆的周长时,如果不描,那只是圆的内部,而不是圆的周长。因此,细节不容忽视。

总之,教学为我们留有了缺憾,有了缺憾,并不可怕,关键是我们必须认真反思总结,从缺憾中走出来,化缺憾为精彩!

平行四边形面积教案篇7

教学内容:教科书第79~81页

教学目标:

1.使学生通过探索,理解和掌握平行四边形的面积计算公式,会计算平行四边形的面积。

2.通过操作、观察、比较活动,初步认识转化的方法,培养学生的观察、分析、概括、推导能力,发展学生的空间观念。

教学过程:

一、导入

1.观察主题图(有条件的地方可做成多媒体课件出示),让学生找一找图中有哪些学过的图形。

2.观察图中学校门前的两个花坛,说一说这两个花坛都是什么形状的?怎样比较两个花坛的大小?你会计算它们的面积吗?

3.引入学习内容:长方形的面积我们已经会计算了,今天我们研究平行四边形面积的计算。

板书课题:平行四边形的面积

二、平行四边形面积计算

1.用数方格的方法计算面积。

(1)用多媒体或幻灯出示教材第80页方格图:我们已经知道可以用数方格的方法得到一个图形的面积。现在请同学们用这个方法算出这个平行四边形和这个长方形的面积。

说明要求:一个方格表示1cm2,不满一格的都按半格计算。把数出的数据填在表格中(见教材第80页表格)。

(2)同桌合作完成。

(3)汇报结果,可用投影展示学生填好的表格。

(4)观察表格的数据,你发现了什么?

通过学生讨论,可以得到平行四边形与长方形的底与长、高与宽及面积分别相等;这个平行四边形面积等于它的底乘高;这个长方形的面积等于它的长乘宽。

2.推导平行四边形面积计算公式。

(1)引导:我们用数方格的方法得到了一个平行四边形的面积,但是这个方法比较麻烦,也不是处处适用。我们已经知道长方形的面积可以用长乘宽计算,平行四边形的面积是不是也有其他计算方法呢?

学生讨论,鼓励学生大胆发表意见。

(2)归纳学生意见,提出:通过数方格我们已经发现这个平行四边形的面积等于底乘高,是不是所有的平行四边形都可以用这个方法计算呢?需要验证一下。因为我们已经会计算长方形的面积,所以我们能不能把一个平行四边形变成一个长方形计算呢?请同学们试一试。

学生用课前准备的平行四边形和剪刀进行剪和拼,教师巡视。

请学生演示剪拼的过程及结果。

教师用课件或教具演示剪—平移—拼的过程。(如教材第81页的图示)

(3)我们已经把一个平行四边形变成了一个长方形,请同学们观察拼出的长方形和原来的平行四边形,你发现了什么?

小组讨论。可以出示讨论题:

①拼出的长方形和原来的平行四边形比,面积变了没有?

②拼出的长方形的长和宽与原来的平行四边形的底和高有什么关系?

③能根据长方形面积计算公式推导出平行四边形的面积计算公式吗?

小组汇报,教师归纳:

我们把一个平行四边形转化成为一个长方形,它的面积与原来的平行四边形面积相等。

这个长方形的长与平行四边形的底相等,

这个长方形的宽与平行四边形的高相等,

因为 长方形的面积=长×宽,

所以 平行四边形的面积=底×高。

3.教师指出在数学中一般用s表示图形的面积,a表示图形的底,h表示图形的高,请同学们把平行四边形的面积计算公式用字母表示出来。

三、巩固和应用

1.出示例1。读题并理解题意。

学生试做,交流作法和结果。

2.讨论:下面两个平行四边形的面积相等吗?为什么?

平行四边形面积教案篇8

一、创设情境,呈现真实

师:我们一起回忆一下,已经学过关于长方形的哪些知识?(出示长方形,并且让学生回忆有关它的周长和面积的知识)

师:今天我们来研究平行四边形的面积。这里有两个图形,请大家先测量有关数据,再计算它们的面积。(图略)

生活动后汇报如下:

长方形的长6厘米,宽4厘米,长方形的面积=6×4=24平方厘米

(1)平行四边形底6厘米,另一条底4厘米,它的面积=6×4=24平方厘米

(2)平行四边形底6厘米,高3厘米,它的面积=6×3=18平方厘米

二、否定错误猜想

1、师:计算同一个平行四边形的面积,大家有几种不同的想法,可以肯定其中必定有错误。请大家看清楚,每种猜想的意思,然后作出判断。

你觉得哪种更合理?能不能举个例子,证明哪种是错误的。

生:我觉得可以用底乘底来计算。我们知道平行四边形容易变形,如果把一条底边拉直,就变成了长方形,长方形的面积等于长乘宽,所以平行四边形的面积等于底乘底。

师:这位同学想到了平行四边形容易变形的特征。大家觉得有道理吗?

生:老师,我不同意这样的想法,按照他的说法,如果把这个平行四边形压扁,它的面积难道还是24平方厘米吗?

2、师:(演示平行四边形变形的过程)请同学们仔细观察,平行四边形在变形过程中,什么发生了变化?什么始终没变?

生:我发现平行四边形在变形过程中,面积边了,而两条边的长度始终不变。所以用“底乘底”计算平行四边形的面积是错误的。

师:在平行四边形变形过程中,随着面积的变化,什么也同时发生了变化?(再次演示长方形渐变成平行四边形。)

生:(兴奋地)高!

师:现在,你觉得平行四边形的面积与它的什么有关?

生:我觉得平行四边形的面积与它的高有很大的关系。

3、师:用什么办法可以比较它们的面积大小呢?

生:把平行四边形多出来的三角形剪下来,补到另一边,看出长方形大,平行四边形小。

师:变成长方形后,面积大小变了没有?

生:没有

师:那么要计算平行四边形的面积,应该怎么办?

生:要求出平行四边形的面积,就知道长方形的面积,所以这个平行四边形的面积应是6乘3来计算,而不是6乘4。

生:6是长方形的长,也是平行四边形的底,3是拼成后的长方形的宽,也是平行四边形的高,所以第二种猜想是正确的。

师:这位同学把“计算平行四边形的面积”这个问题转化成了“计算长方形的面积”,利用旧知识解决了新问题。

三、归纳计算方法

师:是不是所有的平行四边形都可以剪拼成长方形呢?请同学们任意拿一个平行四边形,想一想,怎样可以把它转化成一个长方形。

根据学生反馈情况进行课件演示,出现几种拼法(略)

师:这几种剪拼方法有什么相同之处?

生:都是先沿着平行四边形底边上的高剪开,再拼成一个长方形。

生:在剪拼过程中,图形的形状变了,面积不变。

师:为什么平行四边形的面积可以用“底乘高”来计算?

生:因为长方形的长相当于平行四边形的底,长方形的宽相当于平行四边形的高,长方形面积等于长乘宽,所以平行四边形面积等于底乘高。

师:这个平行四边形公式是不是适用于所有的平行四边形呢?为什么?

生:对任何一个平行四边形,只要沿着底边上的高剪开,一定都可以拼成长方形,所以平行四边形的面积=底×高。

师:我们用s表示平行四边形的面积,用a表示底,用h表示高,那么计算平行四边形的面积公式用字母表示为s=ah。

四、反思探究过程

师:今天我们遇到了一个什么新问题?我们是怎样解决的?有什么收获?

平行四边形面积教案最新8篇相关文章:

曲老师教案最新8篇

幼儿艺术领域的教案最新8篇

五上语文教案最新8篇

变颜色教案最新8篇

大班垃圾分类教案最新8篇

陌生人教案最新8篇

歌唱活动教案最新8篇

有趣的"体"科学教案最新8篇

幼儿园艺术活动教案最新8篇

小班《防溺水》教案最新8篇

平行四边形面积教案最新8篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
156045