教案是教师为了调动学生积极性预先撰写的文字载体,作为教师平时都应该先将教案制定好才行,下面是写文书吧小编为您分享的八上数学轴对称教案7篇,感谢您的参阅。
八上数学轴对称教案篇1
学情分析:由于本教材是三年级下册的教学内容,所借用的则是二年级的学生。由于学生年龄小,自主探究的能力不强,如何让其在有限的时间和空间内,积极主动地参与到各个学习活动中,理解轴对称的含义,创造出轴对称图形,是本节课所需解决的问题。
设计理念:图形特征的探究,方法应该是多元化的,而合作的学习方式能充分展示学生的各种思维方式,张扬个性,更好地培养学生的学习能力。为此,我设计了以下的教学活动。
教学目标:
1、使学生初步认识轴对称图形,理解轴对称图形的含义,能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略轴对称图形的美妙与神奇,激发学生的数学审美情趣。
重点:让学生感知对称现象,认识轴对称图形。难点:判别轴对称图形方法的得出。
教学过程:
一、创设情景,激趣导入。
(1)出示眼睛不对称的娃娃头像图片。学生发表意见,引出课题。
师:在我们生活当中,有许多事物都是因为有了对称才产生美,今天我们就一起去认识有着对称美的轴对称图形。
(创设贴近学生心理特点和认知水平的情景,自然而然把学生引入新课。)
二、感悟特征,“识”对称。
1、出示天安门、飞机、奖杯、等图片,引导学生观察,说出它们的共同点。
2、引导学生动手操作。(课本附页的图形)。
引导学生通过动手折一折、比一比,感受这些图形“对折后两边完全重合”的特征。
3、出示各种几何图形,让学生小组合作,探究其是否对称。
4、认识轴对称图形、对称轴定义
师:像这样对折后,能完全重合的图形叫做:轴对称图形。(板书:对折 完全重合)。
把轴对称图形对折后,折痕所在的这条直线称为:对称轴。(板书:折痕 对称轴)。
(本环节,放手让学生操作、交流、体会。让他们在自主探索的过程中感悟特征。)
三、深化认识,“做”对称。
(1)让学生动手操作,创造轴对称图形。(学生操作,教师巡视)
引导学生说说自己是怎么创造的,在交流中进一步深化学生对轴对称图形特征的认识。
(2)展示学生作品。说说各自的创作方法。
(在本环节设计了动手操作活动,使学生在获得发展的过程中愉悦身心,张扬个性。)
四、多向拓展,“辩”对称。
1、课件出示:天天开心。(心:是剪出来的轴对称图形)
引导学生观察,发现“天”字也是轴对称的图形。
2、出示字母: b a n g
引导学生判断各个字母是否轴对称图形,出现争议的字母b,引导学生验证结果。
3、挑战难题,激励优胜。
①“木”字的一半②看似轴对称的“奉”字,让学生判断分析,合成 “棒”字激励学生。
4、指导学生掌握学习方法:(猜测——验证——总结)
5、引导学生列举生活中的例子。
(多向拓展,让学生感悟数学在我们生活中无处不在。)
五、升华认识,赏对称。
1、欣赏短片
2、说一说。
出示短片中不止一个对称轴的图片,让学生利用自己的认知能力说一说,为以后的学习铺垫。
(通过赏析,引导学生感受生活的美妙与神奇,激发学生发现美、创造美的积极情感。)
六、课堂小结
出示两幅是轴对称的表情图片,让学生说说自己今天的收获。(认知的、情感的)
(本环节,既让学生感悟了成功的喜悦,也合理地整理了课堂的知识点。)
师:轴对称图形是和谐、美丽的,而且在生活中发挥着重要的作用。最后,老师希望大家在以后的学习生活中,能继续用数学的眼光去观察生活,欣赏生活。
板书设计: 轴对称图形
(猜测——验证——总结)
对折 完全重合
折痕 对称轴
教学反思:我在本节课让学生通过折一折,比一比,摸一摸等直观手段,让学生初步认识了轴对称现象,还有轴对称图形,让学生能以新的角度去观察物体,研究物体,体验它们的对称美。我这节课最大的遗憾是没有提供一个让学生充分展示的平台,没有给予充足的时间学生表达自己的观点。
八上数学轴对称教案篇2
学习目的:
1.通过展示轴对称图形的图片,使学生初步认识轴对称图形;
2.通过试验,归纳出轴对称图形概念,能用概念判断一个图形是否是轴对称图形;
3.培养学生的动手试验能力、归纳能力和语言表述能力。
学习过程:
一、探究活动(一)
1.动手做剪纸:(1)将一张长方形的纸对折;(2)在纸上画出一个你喜欢的图形;
(3)沿线条剪下;(4)把纸展开;
2.观察下面的图形,它们有什么共同特征?
3.结论:
如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做,这条直线就是它的。这时,我们也说这个图形关于这条直线(成轴)对称。
二:尝试应用(一)
1.先想后做:下面图形是轴对称图形吗?如果是,请画出它们的对称轴。
等腰三角形等腰梯形等边三角形
平行四边形正方形圆
2.想一想下列英文字母中,那些是轴对称图形?
3.猜字游戏(抢答)
在艺术字中,有些汉字是轴对称的,
猜猜下列是哪些字的一半?
三:探究活动(二)
1.(1).看下面两组图形,和刚才的蝴蝶,枫叶等比较,有什么不同?
第一组第二组
(2)思考:这两幅图有什么共同点?
2.结论:
把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形这条直线叫做,折叠后重合的点是对应点,叫做。
四:尝试应用(二)
1.下面给出的每幅图形中的两个图案是轴对称的吗?如果是,试着找出它们的对称轴,并找出一对对称点。
2.说出图中点a、b、c、d、e的对称点。
3.思考:(1)成轴对称的两个图形全等吗?
(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形全等吗?这两个图形对称吗?
(3)把成轴对称的两个图形看成一个整体,它就是一个什么图形?
4.比较归纳。
轴对称图形两个图形成轴对称
区别个图形个图形
联系1.沿一条直线折叠,直线两旁的部分能够
2.都有
3.如果把两个成轴对称的图形看成一个图形,那么这个图形
就是如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线
五:链接中考
1.下图是由小正方形组成的“l”形图。请你在下图中添画一个小正方形,使它成为轴对称图形。
2.图中有阴影的三角形与哪些三角形成轴对称?整个图形是轴对称图形吗?它共有几条对称轴?
六:智力测验:
七:课堂小结:本节课你有什么收获?
八上数学轴对称教案篇3
优秀教案片段:
(师利用多媒体课件出示一些轴对称图形)
师:小朋友们,这些图形美吗?仔细观察这些图形,它们有 哪些特点?
生:这些图形的两边都一样。
生:这些图形都是对称的。
师:你们想自身动手做一个漂亮的对称图形吗?
生:想。
师:那就抓紧时间拿出你们准备的彩纸和剪刀,开始行动吧!不会做的小朋友可以请老师和同学帮助。
设计说明:课前我已了解到三年级同学在美术课时已学过制作对称图形。所以,我就先让同学自由创作,并充沛尊重同学的个性差别,对个别动手能力较差的同学适时给予协助引导,对于一些动手能力较强的同学,和时给予鼓励肯定。
(剪图形活动结束)
师:现在请小朋友们举起你剪好的图形,让老师看一看,大声说出它的名字。
生:(苹果、松树、小房子、小花、蝴蝶、飞机、心形、图形……)
师:请一位小朋友说一说你做的是什么图形?你是怎么做的?
生:我做的是一个圆形,我先把一张纸对折,然后用量角器在上面画出半个圆形,再剪下来,打开,就成了一个完整的圆形了。
师:你知道利用工具来做,真不简单,还有谁愿意说?
生:我做的是一棵松树,我也是把一张纸对折,先在上面画出一棵松树的一半,然后剪下来,打开,就成了一棵完整的松树了。
师:为什么要先把一张纸对折?
生:因为假如不对折,剪出的图形两边就不一样大了。
(仍有同学手高高举起)
师:还有人想说呀?下面就请你们把剪好的图形在小组内交流展示,互相说一说自身是怎么做的?
设计说明:展示作品时,同学学习兴趣高涨,通过相互之间的交流,使同学在做数学的过程中初步感知轴对称图形的特征。
师:(出示蝴蝶图形做示范)请小朋友们把你们剪好的图形像老师这样对折,看一看、比一比对折后两边的图形,你发现了什么?
生:对折后,两边的图形重合了。
师:(出示一片不对称的枫叶图形)老师这儿还有一个图形,现在我把它也对折,老师手中的图形对折后的情况和你手中的图形对折后的情况一样吗?
生:不一样。
师:哪些地方不一样?
生:(指着老师手中的枫叶图形)
这个图形对折后两边的图形不一样大,一边大,一边小。
老师手中的图形对折后,两边的图形没有重合完,下边还多出来一局部。
师:(趁机问)你们手中的图形对折后,是怎样重合的?
生:全部重合完了。
师:有没有多出来的局部?
生:没有。
师:有没有缺少的局部?
生:没有。
师:(指着同学的图形)这种重合就叫做完全重合。
师:(利用蝴蝶图形再次演示)像这种,对折后两边能够完全重合的图形,我们就把它叫做轴对称图形。
设计说明:我让同学充沛利用自身剪出的图形作为学具,指导同学亲自动手折一折,看一看,比一比,观察比较出两种图形对折后的不同情况,让每一位同学都主动参与,动手操作,亲身经历知识形成的过程,发现轴对称图形"对折后,两边完全重合"的特征。
师:现在,请小朋友们打开你的轴对称图形,仔细观察图形的中间,你又发现了什么?
生:(中间有1条线)
师:这条线是怎么得来的?
生:刚才我们对折的时候留下来的折痕。
师:刚才我们对折的时候就是沿着这条折痕所在的直线怎么样的?
生:对折的。
师:假如我们不沿着这条直线对折会怎么样?
生:两边的图形就不能完全重合了。
师:这说明这条线怎么样?
生:很重要。
师:你能给这条线取个名字吗?
生:中间线。
师:为什么把它叫做中间线?说说你的理由好吗?
生:因为这条线在这个图形的正中间,所以我把它叫做中间线。
师:还有谁想说?
生:对折线,因为这条线是我们对折后留下来的。
生:重合线,因为沿着这条线对折两边的图形就完全重合了。
师:小朋友们给这条线取的名字都非常有创意,想听数学小博士是怎么说的吗?
(课件演示:一个图形沿一条直线对折后,两边的图形能够完全重合,这个图形就是轴对称图形,折痕所在的这条直线叫对称轴。)
设计说明:在这一教学环节中,我再次引导同学亲身经历探索、发现知识的过程,体现同学的主体性,让同学根据自身的理解,给"这条线"取名字,培养同学的创新思维和空间想象能力,加深对"对称轴"的理解。在让同学通过动手操作,初步感知的基础上,配合课件动态出示"轴对称图形"的概念,使同学的认知结构逐步得到完善,由感性认识上升到理性认识。
八上数学轴对称教案篇4
教学目标:
1、联系生活中的具体物体,通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2、使学生能根据自己对轴对称图形的初步认识,在一组实物图案和平面图形中识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
3、使学生在认识和制作简单的轴对称图形的过程中,感受到物体或图形的对称美。激发对数学学习的积极情感。
教学重点:
使学生初步认识轴对称图形的一些基本特征,能识别出轴对称图形,能用一些方法做出轴对称图形,能在方格纸上画出简单的轴对称图形。
教学难点:
引导学生自己发现和认识轴对称图形的一些基本特征。
教学准备:
多媒体课件一套,每小组有不同的图形一套,小剪刀等。
教学过程:
一、创设情境,引入新课
情境导入:昆虫家族今天开了个舞会,它们正欢快的飞舞着。看!它们向这儿飞来了,不过只有它们的半个身影。它们说:“只要你猜对我们是谁,我们就会出现。”
1、请你猜一猜,他们分别是什么?
2、提问:你们怎么猜得这么准啊?(它们的两边都是一模一样的。)
小结:像这些昆虫的两边是一模一样,我们就说它是对称的。
?设计意图:从学生熟悉的事物入手,根据学生的感知规律,创设了有趣的“猜一猜”情境,不但激发了学生的学习兴趣,同时昆虫图形的介入为学生感知轴对称图形的特征作了铺垫。】
师:老师这还带来了一组对称物体的照片,请大家来观察,看看这些照片有什么共同之处。
生:左右两边一模一样。
二、合作交流,感悟新知
1、初步感知
过渡:刚才同学们的观察都很准确。生活中还有哪些物体是对称的?
生:蝴蝶,裤子,鞋子,七星瓢虫等。
师:日常生活中,我们不但可以经常看到一些对称的物体,还能看到很多对称的图形。今天老师也要给你们露一手,看看我要表演什么啊?(剪纸)嗯,不过,你能猜出我剪的是什么吗?
学生回答:(剪一棵松树)。
提问:那么仔细观察这两个图形,看看它们有什么相同的地方?
引导学生,让他们说出:这两个图形的两边是一模一样的,它们是对称的,中间有一条折痕。
继续提问:(出示提前准备好的一张音符图)那这个图形的两边也是一模一样的,中间也有一条折痕,那它和上面两个图形有什么不同的地方?请你们把它们对折后想一想。
引导:音符图对折后只上半部分重叠在一起,下半部分不重叠。像这样只有一部分重合在一起,我们就称为是部分重合。(板书:部分重合)而松树图和爱心图对折后能全都重合在一起。
小结:对折后能全都重合在一起,我们称为是完全重合。(板书:完全重合)像这样对折后能完全重合的图形我们叫它轴对称图形。这条折痕就是对称轴,我们用点划线来表示。
揭题:这就是我们这节课要学习的内容轴对称图形。(板书:轴对称图形)
同桌互相说一说什么是轴对称图形。
?设计意图:通过折音符图形,得出音符图形只有部分重合,在与松树、爱心图形的比较中,感受部分重合与完全重合的区别,学生对“完全重合”的认知已经非常地清晰,从而深刻理解轴对称图形的特征。】
2、加深理解
过渡:同学们说的真好。这里有三张照片,是我对同一只杯子从不同的角度拍的。
(1)出示这是从杯子的正面拍的。这个图形是轴对称图形吗?对称轴在哪?
(2)出示这是从杯子的上面拍的。这个图形是轴对称图形吗?对称轴在哪?
小结:对称轴可以有不同的方向。
(3)出示这是从杯子的侧面拍的。这个图形是轴对称图形吗?那你有办法把它变成
轴对称图形吗?(添柄、去柄)
小结:同一只杯子由于观察的角度不一样,看到的图形有时是轴对称图形,有时不是轴对称图形。
?设计意图:通过不同角度的杯子照片,让学生明白可以横着画对称轴,也可以竖着画对称轴,也可以斜着画对称轴,对称轴可以有不同的方向。】
三、动手操作,巩固新知
1、折一折
过渡:今天我给大家带来了一些老朋友,你还认识它们吗?那我们就一起说出它们的名字。
(1)下面请你们用对折的方法,看看哪些是轴对称图形,哪些不是轴对称图形?
(2)生折交流汇报。
平行四边形不是轴对称图形。为什么不是,你是如何证明的?(对折后不能完全重合)
能不能折一次就好了?
小结:我们要判断一个图形是不是轴对称图形,要看它对折后能否完全重合。
(3)那其他四个图形都是轴对称图形吗?你是怎样判断的?
生演示并说明理由
等腰三角形、等腰梯形有一种对折方法,长方形有两种对折方法,圆有无数种对折方法。
小结:这些图形不管只有一种对折方法还是很多种对折方法,只要对折后能完全重合的图形,就是轴对称图形。
2、判断
过渡:刚才同学们都用对折的方法来判断是不是轴对称图形。现在,不对折,你能用眼睛看出来吗?真的?现在就考考你们。
出图生判断,说说对称轴在哪?
?设计意图:练习设计体现生活化、多样化、层次分明,同时也让学生再一次感受到数学与生活的密切联系。即让学生巩固理解轴对称图形的特征,同时又突出轴对称图形的重要性。】
四、再次探索,掌握画图方法
过渡:刚才我们是根据一半的图形猜出另一半,那如果告诉你轴对称图形的一半,你能画出它的另一半吗?
(1)生尝试画一个,汇报交流
你是如何画的?你为什么要和这个点连起来?这两个点为什么不用找?
(2)方法小结:第一步找对称点,第二步依次连线。
说明在找对称点的时候,如果图形的顶点在对称轴上,那么这个点的对称点就是它自己,就不用找了。
(3)用这种方法完成其他两幅图并汇报交流。
五、全课总结,分享收获
今天,我们学习了轴对称图形,你有哪些收获呢?
六、欣赏图片,拓展知识
留心我们的生活,你会发现轴对称图形、对称现象的物体无时无刻都在美化我们的生活。蝴蝶、蜻蜓等因为有了对称的翅膀,才能自由飞翔;我们的服装因为对称才显得大方、典雅;古今中外,有许多的建筑也是对称的,多么神奇,多么美丽。我们只要用心思考,就会感到对称的力量。
[资料链接]脸谱是我国的国粹,京剧脸谱是我国戏剧中独有的化妆艺术,具有很高的欣赏价值,从数学角度看,这些脸谱在设计绘画中采用的就是轴对称的方式。还有造型奇巧的剪纸艺术作品都是我们民间艺术家利用轴对称的原理制作的。另外,在标志建筑,服装、国旗、体育、运输、航天等很多地方都设计应用了对称方式。
八上数学轴对称教案篇5
一、教学目标
(一)知识与技能
会画一个图形的轴对称图形,掌握画图的方法和步骤:先画出几个关键的对称点,再连线。
(二)过程与方法
通过观察、操作等活动,能在方格纸上补全一个轴对称图形。
(三)情感态度和价值观
让学生在探索的过程中进一步增强动手操作能力,发展空间观念,培养审美观念和学习数学的兴趣。
二、教学重难点
教学重点:掌握画图的方法和步骤。
教学难点:能在方格纸上画出轴对称图形的另一半。
三、教学准备
方格纸、课件。
四、教学过程
(一)复习导入
教师:同学们,我们昨天认识了轴对称图形,谁能说说它有什么特点?
预设:对应点到对称轴的'距离相等。
(二)探索新知
1.画出轴对称图形。
教师:根据对称轴,补全下面的轴对称图形。
教师:要想顺利的画出另外一半的图形,你有什么办法呢?根据是什么?
(小组讨论,全班交流)
预设:我们刚刚学习了轴对称图形的对称点的特点,可以利用这个方法来画。
教师:很好,怎样来找点呢,所有的点都找吗?
预设:不用,只要数出关键点到对称轴的距离;在对称轴的另一侧点出关键点的对称点;顺次连接描出的各个点即可。
教师:谁能来展示一下你画出的轴对称图形的另一半?
学生展示自己的作品。
2.探究结果汇报。
教师:同学们,今天我们学习了哪些知识?
预设:在方格纸上画出轴对称图形的另一半时,先确定对称轴,找出关键点,数出关键点到对称轴的距离,然后点出关键点的对应点,最后依次连接各个对应点,就可以画出轴对称图形的另一半。
教师:你能简要概述一下上面画轴对称图形另一半时的步骤吗?
学生:确定对称轴后,一找关键点;二数出距离;三点对应点;四连线。
设计意图
引导学生思考:补全轴对称图形的方法是这节课的难点,在学生充分的讨论后,通过学生的实践来总结出方法,进行提炼,学生记忆的会更深刻。
八上数学轴对称教案篇6
教学内容
苏教版《义务教育课程标准实验教科书 数学》三年级(下册)第56~61页。
教学目标
1. 通过观察和动手操作,使学生初步体会生活中的对称现象,认识轴对称图形的一些基本特征。
2. 使学生能在实物图案或简单平面图形中识别出轴对称图形,能用合理的方法“做”出轴对称图形,进一步丰富对图形的认识,发展初步的形象思维和空间观念。
3. 使学生在积极参与数学学习活动的过程中,对数学产生好奇心、求知欲,感受轴对称图形的对称美,激发对数学学习的积极情感。
教学过程
一、 创设情境,导入新课
拿出一张彩纸,对折后描出“爱心”图的一半。
谈话:老师把这张彩纸对折一下,沿着这条边剪一个图形,你能猜出老师剪的是什么图形吗?(演示:剪出图形并展开),原来是一个“爱心”图。我希望三(2)班的同学们每人都有一颗爱心。(把“爱心”图贴在黑板上)请你们仔细观察一下,这个图形的左右两边是怎样的?
预设:(1) 左右两边是一样的;(2) 左右两边是对称的……
小结:像这样的图形,两边是对称的。有趣吗?今天我们就来学习像这样的图形。(板书:对称)
[设计意图:学生在日常的学习生活中已经接触到一些对称的物体,对对称现象有了一定的感性认识。在课的开头,用剪纸的形式导入,容易吸引学生的注意,营造愉悦的课堂氛围,为认识轴对称图形的教学作好铺垫。]
二、 操作实践,探索新知
1. 感知对称。
谈话:同学们想不想像老师这样也剪一个漂亮的“爱心”呢?请大家拿出剪刀和彩纸,跟老师一起剪一个这样的图形。
边讲解边演示,师生共同剪出一个“爱心”。
谈话:请大家继续看下面的几个图形。(课件出示天安门、奖杯、飞机等图片,见教科书附页)
提问:认识这些图形吗?这些图形有什么特点呢?(学生自由回答)
谈话:请同学们拿出自己从附页中剪下来的这几个图形,折一折、比一比,看看你能发现什么。
学生操作,同桌互相说一说。
反馈:谁愿意把你的发现说给全班同学听?
预设:(1) 这些图形对折后,两边都是一样的;(2)它们是对称的。
谈话:像这样对折后,图形的两边完全一样,也可以说成是图形的两边“完全重合”。(板书:完全重合)请大家看大屏幕(课件演示天安门图片对折的动画),大家是这样对折的吗?
再问:对折后,哪两边完全重合了?(引导学生体会折痕的两边能够完全重合)
谈话:请同学们拿出另外两个图形,先折一折,看两边是不是也能完全重合;再指一指折痕,并和同桌说一说,每一个图形的哪两边完全重合。
指出:对折后两边能完全重合的图形,叫做轴对称图形。(板书:轴对称图形)这条折痕所在的直线,就是轴对称图形的对称轴。(板书:对称轴)
提问:你能用自己的语言说一说轴对称图形有什么特征吗?
预设:(1) 把一个图形对折后,如果两边一样,这个图形就是轴对称图形。(2) 把一个图形对折后,如果两边完全重合,这个图形就是轴对称图形。
追问:对折后,图形的两边怎样才叫完全重合?
预设:(1) 两边完全重叠在一起;(2) 两边的大小完全一样,形状也完全相同。
2. 教学“试一试”。
出示:等腰三角形、等腰梯形、正方形、正五边形、平行四边形、圆,并按顺序给图形编号。
启发:这些平面图形中,哪些是轴对称图形?哪些不是轴对称图形?(稍停)别忙着发言,先想一想,轴对称图形有什么特点?要知道一个图形是不是轴对称图形,可以怎样做?(可以把这个图形对折,看折痕的两边能不能完全重合)
谈话:请同学们从第一个信封中拿出这几个图形,先动手折一折,再和小组里的同学说一说,这些图形中,哪些图形是轴对称图形。
学生操作,教师巡视,并对个别学生进行必要的指导。
反馈:通过对折,你知道哪些图形是轴对称图形?(1号、2号、3号、4号、6号是轴对称图形)
指正方形,提问:这个正方形,为什么是轴对称图形?能演示一下吗?
追问:还有不同的折法吗?
学生演示各种不同的折法。
小结:正方形不仅上下对折两边完全重合,左右对折或沿对角线对折,折痕的两边也能完全重合。不论怎样对折,只要折痕的两边完全重合,我们就说这个图形是轴对称图形。
指平行四边形,提问:这个平行四边形,为什么不是轴对称图形?
如果学生中有不同意见,则请判断正确的同学想办法说服不同意见的同学。
[设计意图:动手实践是学生学习数学的重要方式。本课教学的关键就是使学生理解图形对折后“完全重合”的含义。在教学中,先让学生折一折天安门、奖杯、飞机图形,初步认识到“完全重合”就是左右两边“大小、形状完全一样”。“试一试”的教学,通过观察、实践、思考、辩论等活动,让学生进一步加深对 “完全重合”含义的理解,同时体会到有些轴对称图形的对称轴不止一条。]
三、 及时巩固,深化认识
1. 找一找。
(1) 出示“想想做做”第1题。
谈话:你能判断下面的图形哪些是轴对称图形吗?
每一个图形,都让学生说一说自己是怎样想的,可以怎样对折,对称轴在哪里,再通过课件演示对折的过程,验证学生的判断。
(2) 出示拼音字母:wo ai chang shu。
谈话:这些拼音字母哪些可以看作是轴对称图形?
学生逐一判断,并说明理由。
提问:你知道这些拼音字母的意思吗?
全班齐读:我爱常熟。
2. 做一做。
谈话:今天我们研究了这么多轴对称图形,你们想不想自己动手“做”一个漂亮的轴对称图形?(想)请同学们拿出第二个信封中的材料,自己想办法“做”出一个轴对称图形来。
学生操作,教师巡视,并让学生把自己的作品展示在黑板上。
交流:黑板上都是同学们用剪纸的方法制作的轴对称图形,漂亮吗?
小结:同学们真聪明,“做”出了这么多美丽的轴对称图形,老师向你们表示祝贺。
3. 猜一猜。
谈话:下面我们来做一个猜猜看的游戏。老师把轴对称图形的一半盖住了,你能猜出它是什么图形吗?
电脑出示:五角星、大众汽车标志、工商银行标志、汉字“中”等图案的一半,学生回答后,展示整个轴对称图形。
[设计意图:本环节设计了找一找、做一做、猜一猜三个有趣的活动,层层递进,帮助学生及时巩固、运用所学知识。特别是在“做一做”这一环节中,让学生利用教师提供的材料,充分发挥想象力、创造力,动手“做”出一些轴对称图形。在这一过程中,学生手脑并用,以“动”促“思”,轴对称图形的特征被深深地印在脑海里,空间想象能力得到加强,创新意识得到培养,并且体验到成功的快乐。]
四、 全课总结
提问:同学们,今天我们一起学习了轴对称图形,你有哪些收获?
着重引导学生说说轴对称图形的主要特征,以及判断一个图形是否是轴对称图形的方法。
五、 欣赏图片,情感体验
谈话:轴对称图形给人一种对称、和谐的美感。其实,在我们的生活中就有许多美丽的对称现象,请欣赏。(课件播放:生活中的对称)
谈话:大家感觉美吗?如果把它们画下来就形成了我们今天学习的轴对称图形。希望同学们运用今天所学的知识,在生活中发现美,创造美。
[设计意图:利用多媒体课件图、文、声、像并茂的特点,向学生展示了生活中的对称现象。美妙的图形深深地吸引了学生,学生的思绪因插上想象的翅膀而飞扬,真切地感受到对称的美。]
八上数学轴对称教案篇7
课题:1.1~1.4复习(初二上数学)b版
课型:复习
学习目标(学习重点):
1、了解轴对称与轴对称图形,会准确画出轴对称 图形,找出对称轴、对称点等、
2、能熟练应用轴对称的性质、
3、复习线段的垂直平分线,角平分线的性质及推论,并能加以灵活运用、
例题:
例1、(1)下列说法中,正确的个数是( )
①轴对 称图形只有一条对称轴,②轴对称图形的对称轴是一条线段,③两个图形成轴对称,这两个图形是全等图形,④全等的两个图形一定成轴对称,⑤轴对称图形是指一个图形,而轴对称是指两个图形而言、
a、1个 b、2个 c、3个 d、4个
(2)如图在一个规格为6 ×12(即6×12个小正方形)的球台上,有两个小球 a,b。若击打小球a,经过球台边的反弹后,恰好击中小球b,那么小球a击出时,应瞄准球台边上的点( )
a、p1 b、p2 c、p3 d、p4
例2、作图题(1)作 出图1中△abc关于直线l的对称图形;
(2)如图2,∠bac=60°,点p在边ac上,试用带刻度的直尺和量角器,在∠bac内部找一点o,使点o到a、p的距离相等,且到∠bac的两边的距离相等、
图1 图2
例3、已知:如图,△abc中,△abc的外角平分线ad,交bc的垂直平分线于d点,de⊥ab于点e,df⊥ac于点f,
(1)求证:be=cf;
(2 )若ab=15,ac=7,求ae的长、
课后续助:
1、点a和点b关于直线l对称 ,对直线l任意一点p,必有pa____pb
2、对称图形________有一条对称轴,________有两条对称轴,_____ ___有四条对 称轴,_______有无数条对称轴。(各填上一个图形即可) 、
3、到三角形的三个顶点的距离相等的点是___________的交点、到三角形的三边的距离相等的点是___________的交点、
4、如果△ a bc与△a/b/c/关于直线l对称,且∠a=500,∠b/=700,那么
∠c/ =___ _、
5。如图,点p在∠aob内,pm⊥oa于m,pn⊥ob于n,且pm=pn,连结op,则op是________________、依据是_______________ ________________、
6、如图,ab=ac,ac的垂直平分线交bc于d,垂足为e,
若ab=10,△abd的周长为23,求△abc的周长、
7、如图,有一个三角形纸片abc,ab=10cm,bc=7cm,ac=6cm,沿过点b的直线折叠这个三角形 ,使顶点c落在ab边上的点e处,折痕为bd,求△aed的周长、
8、如图,在△abc中,∠bac=90°,be平分∠abc,de⊥bc于d,de=dc、
求证:bc=ab+ae、
9、如图,在四边形abcd中,bc>ba,ad=cd,
bd平分∠abc,试说明:∠a+∠c=180°、
八上数学轴对称教案7篇相关文章:
★ 数学集合教案6篇