创新性的教案设计能激发学生的学习兴趣,让课堂充满活力与惊喜,为了提高教学效果,教案中的各个环节应形成一个完整的知识链条,下面是写文书吧小编为您分享的人教版七年级数学上册教案6篇,感谢您的参阅。

人教版七年级数学上册教案篇1
教学目标:
知识与能力:能正确运用角度表示方向,并能熟练运算和角有关的问题。
过程与方法:能通过实际操作,体会方位角在是实际生活中的应用,发展抽象思维。
情感、态度、价值观:
能积极参与数学学习活动,培养学生对数学的好奇心和求知欲。
教学重点:
方位角的表示方法。
教学难点:
方位角的准确表示。
教学准备:
预习书上有关内容
预习导学:
如图所示,请说出四条射线所表示的方位角?
教学过程:
一、创设情景,谈话导入
在现实生活中,有一种角经常用于航空、航海,测绘中领航员常用地图和罗盘进行这种角的测定,这就是方位角,方位角应用比较广泛,什么是方位角呢?
二、精讲点拔,质疑问难
方位角其实就是表示方向的角,这种角以正北,正南方向为基准描述物体的方向,如“北偏东30°”,“南偏西40°”等,方位角不能以正东,正西为基准,如不能说成“东偏北60°,西偏南50°”等,但有时如北偏东45°时,我们可以说成东北方向。
三、课堂活动,强化训练
例1如图:指出图中射线oa、ob所表示的方向。(学生个别回答,学生点评)
例2若灯塔位于船的北偏东30°,那么船在灯塔的什么方位?(小组讨论,个别回答,教师)
例3如图,货轮o在航行过程中发现灯塔a在它的南偏东60°的方向上,同时在它北偏东60°,南偏西10°,西北方向上又分别发现了客轮b,货轮c和海岛d,仿照表示灯塔方位的方法,画出表示客轮b、货轮c、海岛d方向的射线。(教师分析,一学生上黑板,学生点评)
四、延伸拓展,巩固内化
例4某哨兵上午8时测得一艘船的位置在哨所的南偏西30°,距哨所10km的地方,上午10时,测得该船在哨所的`北偏东60°,距哨所8km的地方。
(1)请按比例尺1:000画出图形。(独立完成,一同学上黑板,学生点评)
(2)通过测量计算,确定船航行的方向和进度。(小组讨论,得出结论,代表发言)
五、布置作业、当堂反馈
练习:请使用量角器、刻度尺画出下列点的位置。
(1)点a在点o的北偏东30°的方向上,离点o的距离为3cm。
(2)点b在点o的南偏西60°的方向上,离点o的距离为4cm。
(3)点c在点o的西北方向上,同时在点b的正北方向上。
人教版七年级数学上册教案篇2
一、教材分析
本节内容是人民出版社出版《义务课程实验教科书(五四学制)数学》(供天津用)八年级下册第十章整式第一节整式加减第2小节整式的加减。
二、设计思想
本节内容是学生掌握了“整式”有关概念的延展学习,为后继学习整式运算、因式分解、一元二次方程及函数知识奠定基础,是“数”向“式”的正式过度,具有十分重要地位。
八年级学生已具有了较强的数的运算技能和“合并”的意识(解一元一次方程中用)同时也具有初步的观察、归纳、探索的技能。因此,我结合教材,立足让每个学生都有发展的宗旨,我采用合作探究的学习方式开展教学活动,通过设计有针对性、多样式的问题引导学生,给学生提供充足的、和谐的探索空间让学生学习。通过学习活动不但培养学生化简意识,提升数学运算技能而且让学生深刻体会到数学是解决实际问题的重要工具,增强应用数学的意识。
三、教学目标:
(一)知识技能目标:
1、理解同类项的含义,并能辨别同类项。
2、掌握合并同类项的方法,熟练的合并同类项。
3、掌握整式加减运算的方法,熟练进行运算。
(二)过程方法目标:
1、通过探究同类项定义、合并同类项的方法的活动,培养学生观察、归纳、探究的能力。
2、通过合并同类项、整式加减运算的练习活动,提高学生运算技能,提升运算的准确率培养学生化简意识,发展学生的抽象概括能力。
3、通过研究引例、探究例1的活动,发展学生的形象思维,初步培养学生的符号感。
(三)情感价值目标:
1、通过交流协商、分组探究,培养学生合作交流的意识和敢于探索未知问题的精神。
2、通过学习活动培养学生科学、严谨的学习态度。
四、教学重、难点:
合并同类项
五、教学关键:
同类项的概念
六、教学准备:
教师:
1、筛选数学题目,精心设置问题情境。
2、制作大小不等的两个长方体纸盒实物模型,并能展开。
3、设计多媒体教学课件。(要凸显①单项式中系数、字母、指数的特征②长方体纸盒立体图、展开图。)
学生:
1、复习有关单项式的概念、有理数四则运算及去括号的法则)
2、每小组制作大小不等的两个长方体纸盒模型。
人教版七年级数学上册教案篇3
一、内容特点
在知识与方法上类似于数系的第一次扩张,也是后继内容学习的基础。
内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。
二、设计思路
整体设计思路:无理数的引入——无理数的表示——实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。
学习对象——实数概念及其运算;学习过程——通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式——操作、猜测、抽象、验证、类比、推理等。
具体过程:首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。
最后教科书总结实数的概念及其分类,并用类比的方法引入实数的`相关概念、运算律和运算性质等。
第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。
第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。
第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。
第五节:用计算器开方:会用计算器求平方根和立方根。
经历运用计算器探求数学规律的活动,发展合情推理的能力。
第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。
三、一些建议
1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。
2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。
3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。
4.淡化二次根式的概念。
人教版七年级数学上册教案篇4
教学目标
1.会利用合并同类项的方法解一元一次方程;(重点)
2.通过对实例的分析、体会一元一次方程作为实际问题的数学模型的作用.(难点)
教学过程
一、情境导入
1.等式的基本性质有哪些?
2.解方程:(1)x-9=8;(2)3x+1=4.
3.下列各题中的两个项是不是同类项?
(1)3xy与-3xy;(2)0.2ab与0.2ab;
(3)2abc与9bc; (4)3mn与-nm;
(5)4xyz与4xyz; (6)6与x.
4.能把上题中的同类项合并成一项吗?如何合并?
5.合并同类项的法则是什么?依据是什么?
二、合作探究
探究点一:利用合并同类项解简单的一元一次方程
例1解下列方程:
(1)9x-5x=8;
(2)4x-6x-x=15.
解析:先将方程左边的同类项合并,再把未知数的系数化为1.
解:(1)合并同类项,得4x=8.
系数化为1,得x=2.
(2)合并同类项,得-3x=15.
系数化为1,得x=-5.
方法总结:解方程的实质就是利用等式的性质把方程变形为x=a的形式.
探究点二:根据“总量=各部分量的和”列方程解决问题
例2足球表面是由若干个黑色五边形和白色六边形皮块围成的,黑、白皮块数目的比为3∶5,一个足球表面一共有32个皮块,黑色皮块和白色皮块各有多少个?
解析:遇到比例问题时可设其中的每一份为x,本题中已知黑、白皮块数目比为3∶5,可设黑色皮块有3x个,则白色皮块有5x个,然后利用相等关系“黑色皮块数+白色皮块数=32”列方程.
解:设黑色皮块有3x个,则白色皮块有5x个,根据题意列方程3x+5x=32,解得x=4,则黑色皮块有3x=12(个),白色皮块有5x=20(个).
答:黑色皮块有12个,白色皮块有20个.
方法总结:解题关键是要读懂题目的.意思,根据题目给出的条件,找出合适的数量关系,列出方程,再求解.此题的关键是要知道相等关系为:黑色皮块数+白色皮块数=32,并能用x和比例关系把黑皮与白皮的数量表示出来.
三、板书设计
1.用合并同类项的方法解简单的一元一次方程.
解方程的步骤:
(1)合并同类项;
(2)系数化为1(等式的基本性质2).
2.找等量关系列一元一次方程.
列方程解应用题的步骤:
(1)设未知数;
(2)分析题意找出等量关系;
(3)根据等量关系列方程;
(4)解方程并作答.
教学反思
本节从复习入手,帮助学生回顾合并同类项的相关知识,为学习用合并同类项解方程做好铺垫.教学中采用引导发现的方法,课堂训练中鼓励自己动手,体现学生在课堂上的主体地位;整个教学过程中充分调动学生学习积极性,培养学生合作学习,主动探究的习惯.
人教版七年级数学上册教案篇5
单元教学内容
1、本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系
引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念
2、通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴、数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:
(1)数轴能反映出数形之间的对应关系
(2)数轴能反映数的性质、
(3)数轴能解释数的某些概念,如相反数、绝对值、近似数
(4)数轴可使有理数大小的比较形象化
3、对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分
4、正确理解绝对值的概念是难点
根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:
(1)任何有理数都有唯一的绝对值
(2)有理数的绝对值是一个非负数,即最小的绝对值是零
(3)两个互为相反数的`绝对值相等,即│a│=│-a│
(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a
(5)若│a│=│b│,则a=b,或a=-b或a=b=0
三维目标
1、知识与技能
(1)了解正数、负数的实际意义,会判断一个数是正数还是负数
(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解
(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值
(4)会利用数轴和绝对值比较有理数的大小
2、过程与方法
经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法
3、情感态度与价值观
使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语??
重、难点与关键
1、重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值
2、难点:准确理解负数、绝对值等概念
3、关键:正确理解负数的意义和绝对值的意义
课时划分
1、1 正数和负数 2课时
1、2 有理数 5课时
1、3 有理数的加减法 4课时
1、4 有理数的乘除法 5课时
1、5 有理数的乘方 4课时
第一章有理数(复习) 2课时
1、1正数和负数
第一课时
三维目标
一、知识与技能
能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量
二、过程与方法
借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性
三、情感态度与价值观
培养学生积极思考,合作交流的意识和能力
教学重、难点与关键
1、重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法。
2、难点:正确理解负数的概念。
3、关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解。
教具准备
投影仪、
教学过程
四、课堂引入
我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的、人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数、
在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%、
五、讲授新课
(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数、而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+ ,…就是3,2,0.5, ,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号
(2)、中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数
(3)、数0既不是正数,也不是负数,但0是正数与负数的分界数
(4) 、0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度。
用正负数表示具有相反意义的量。
(5)、 把0以外的数分为正数和负数,起源于表示两种相反意义的量、正数和负数在许多方面被广泛地应用、在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度、例如:珠穆朗玛峰的海拔高度为8844,吐鲁番盆地的海拔高度为-155、记录账目时,通常用正数表示收入款额,负数表示支出款额。
(6)、 请学生解释课本中图1、1-2,图1、1-3中的正数和负数的含义。
(7)、 你能再举一些用正负数表示数量的实际例子吗?
(8)、例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量
六、巩固练
课本第3页,练习1、2、3、4题
人教版七年级数学上册教案篇6
知识目标
使学会解比例的方法,进一步理解和掌握比例的基本性质。
能力目标
联系的生活实际创设情境,体现解比例在生产生活中的广泛应用。
情感目标
利用所学知识解决生活中的问题,进一步培养综合运用知识的能力及情度、价值观的发展。
重点
使学会解比例的方法,进一步理解和掌握比例的基本性质。
难点
体现解比例在生产生活中的广泛应用。
教学过程
教学预设个性修改
目标导学,复习激趣,自主合作,汇报交流,变式训练
创境激疑一、旧知铺垫
1、什么叫做比例?
2、什么叫做比例的基本性质?怎样用比例的基本性质判断两个比能否组成比例?那么组成一个比例需要几项呢?
3、比例有几种表示形式?
合作探究二、探索新知
1、出示埃菲尔铁挂图
2、出示例题
(1)、读题。
(2)、从这道题里,你们获得了哪些信息?
(3)、在这信息里,关键理解哪里?(埃菲尔铁模型与埃菲尔铁塔的高度比是1:10)
(4)、这句话什么意思?(就是埃菲尔铁塔模型的高度:埃菲尔铁塔的高度=1:10)(板书)
(5)、还有一个条件是什么?(埃菲尔铁塔的高是320米)
(6)、我们把这个条件换到我们的这个关系中,就是(板书:埃菲尔铁塔的高度:320=1:10)
(7)、这道题怎么列比例式解答呢?请同学们想想,想出来的同学请举手。
(8)、根据学生的反馈板书:“解:设埃菲尔铁塔模型的高度设为x米”,把这个x代入这个数学模式中就组成了一个比例式(板书x:320=1:10)
(9)、这样在组成比例的四个项中,我们知道其中的几个项?还有几个项不知道?
(10)、不知道的这个项,我们来给它起个名字,好不好?叫做什么?(板书:未知项)
(11)、指着x:320=1:10,问:“这个未知项是多少呢?那怎么办?”谁上来做做?(指名板演)
(12)、为什么可以写成这样的等式呢?10x=320×1(根据比例的基本性质)
(13)、对了,把上面的比例式改写成下面这样一个等式,就是应用了比例的基本性质。应用比例的基本性质,把比例式改写成了一个等式,这个等式还是一个什么样的等式呀?(含有未知数的等式)
(14)、这样含有未知数的等式,叫做方程。那么求出方程中的`未知数就叫做什么?(解方程)那么在这个比例式中,我们知道了任意三项,要求出其中一项的过程又叫做什么?(解比例)出示比例的意义。
(15)、我们解出的答案对不对呢?怎么知道?可以怎样检验?(把结果代入题目中看看对应的比的比值是不是能成比例.)
(16)这道题还有其他的解法吗?(引导学生从比例的意义上来解。
2、教学例3
过渡:我们知道比例还有另一种表示形式,当是=这样形式的时候,又该怎么解呢?
(1)、出示例3,问:这题与刚刚那个比例有哪些不同?
(2)、解这种比例时,要注意些什么呢?(找出比例的外项、内项)
(3)、在这个比例里,哪些是外项?哪些是内项?
(4)、解答(提问:你们是怎么解答的?)、检验。
拓展应用在一个比例中,两个外项的乘积正好互为倒数,已知一个内向是3,另一个内项是多少?
总结这节课主要学习了什么内容?
作业布置教材43页5题。
人教版七年级数学上册教案6篇相关文章: