蒙氏十的分解教案推荐6篇

时间:
Youaremine
分享
下载本文

通过定期更新的教案,教师能够保持教学内容的新颖性,吸引学生关注,很多人在制定教案时,会参考最新的研究,确保教学理念的前沿性,写文书吧小编今天就为您带来了蒙氏十的分解教案推荐6篇,相信一定会对你有所帮助。

蒙氏十的分解教案推荐6篇

蒙氏十的分解教案篇1

教学目标

(1)使学生了解每一个合数,都可以写成几个素数相乘的形式。

(2)掌握质因数和分解质因数的概念,学会用短除法分解质因数。

教学重点、难点

重点:掌握质因数和分解质因数的概念。

难点:

教具、学具准备

教学过程

备注

一、复习准备

1、什么叫做素数?什么叫做合数?各举例说明。

2、20以内的素数有哪几个?为什么”1“既不是素数又不是合数?

二、教学新识

1、教学例2

(1)10是由哪几个素数相乘得到的?

(2)教学归纳:10是由2和5两个素数乘得到的,板书:10=2×5

(3)同时出示24和63的分解图。提问:“4和6”是素数吗?谁能继续分解,在□内填上素数?(指两名学生分别板演)那么,怎样把24和63分别写成几个素数相乘的形式呢?

学生答后板书:24=2×2×2×3;63=3×3×7

(4)把以上3个合数,分别写成了几个素数相乘的形成,是不是每一个合数都可以写成几个相乘的形式呢?再举例说明。

(5):从以上的合数可以看出,每个合数都可以写成几个素数相乘的形式。出示:“一个合数可以写成几个素数相乘的形式,其中一个素数都叫做这个合数的()。把一个合数用质因数相乘的形式表示出来,叫做()。”引导学生看书作答。(板书:“质因数”、“分解质因数”并举例例2说明)

2、练一练

(1)p44第1题,同桌讨论后口答反馈,并说出打x的理由。教师:“2和5,都是素数,但不能叫质因数。因为2和5都是10、20......这些合数的素数,离开这些合数,就不能孤立地叫质因数。4和5都是20的因数,但4和5不都是20的质因数。”

(2)p45第2题,提问:“把下面各数分解质因数”是什么意思?学生答后独立作业在书上之后再评讲。

如果:“51=1×51”对吗?为什么?

“42=3×14”对吗?为什么?

我们已经懂得了什么叫做分解质因数。我们通常用短除法来分解质因

教学过程

备注

数,如何用短除法进行分解呢?

3、教学例3。

(1)15可用哪几种素数相乘的形式来表示?

教师说:“用短除法来分解,先用一个能整除15的素数3除。(板书:3),用3去除得出的商是几?(板书:5),商5是素数还是合数?得出的商是素数,就不要再除下去了,就把除数和商写成相乘的形式。板书:15=3×5。这就是用短除法把15分解质因数。

(2)”42“怎样用短除法进行分解呢?学生答后,教师强调先用一个最小的能整除这个合数的素数去除,板书。

商21是素数还是合数?商21是合数还不是素数怎么办”(继续分解?照上面的方法,继续除下去。)第二次除时,把21当被除数,除数应该是几?为什么?(除数必须整除这个合数的素数,其中最小,通常用3作除数。)学生答后,板书。

商7是素数还是合数?商7已经是素数,短除到此为止。问:合数42,怎样用质因数相乘的形式表示?板书:42=2×3×7

(3)学生试练:用短除法把60分解质因数。练后,让学生与书中对照,统计正确率。把学生中的错误写在黑板上,讨论错在哪里?为什么?

(4)学生看书上概括用短除法分解质因数的结语。要求分清三层意思,划出没层中的关键词语。

三、巩固练习

1、用短除法分解质因数。

365475123

2、不用短除法,分解质因数。

(1)口答:

6=21=22=12=

(2)共同练习:

25=66=16=91=

3、课内作业:书上p45第4题。

四、教学

通过这节课的学习,你懂得了什么?学会了什么?

五、作业《作业本》

对于分解质因数的形式,学生较易掌握,但在实际分解过程中,往往分解得不彻底,最后的因数不都是质数。强调质因数既是质数又是因数。

课后反思:

在教学“分解质因数”这一课时,反馈阶段“把24分解质因数”,我请做得快的同学上黑板板书,板书情况如下:书写非常端正工整,答题步骤及答案无可挑剔。集体订正时,我表扬了这位同学做题迅速、正确、工整,同时也委婉的指出,今后书写时最好按从左到右的顺序写。这时,一个同学突然举手,我让他说说有什么问题,他大声说:“老师,我不同意你的看法,我认为从右往左写是一种创新,你不是经常要我们多创新,常创新吗?”我怔了一下,然后微笑着肯定了他敢于发表自己不同的见解及自己的想法,同时引导大家来讨论,这算不算是一种创新?许多同学都踊跃的发表自己的看法。

蒙氏十的分解教案篇2

一、运用平方差公式分解因式

教学目标1、使学生了解运用公式来分解因式的意义。

2、使学生理解平方差公式的意义,弄清平方差公式的形式和特点;使学生知道把乘法公式反过来就可以得到相应的因式分解。

3、掌握运用平方差公式分解因式的方法,能正确运用平方差公式把多项式分解因式(直接用公式不超过两次)

重点运用平方差公式分解因式

难点灵活运用平方差公式分解因式

教学方法对比发现法课型新授课教具投影仪

教师活动学生活动

情景设置:

同学们,你能很快知道992-1是100的倍数吗?你是怎么想出来的'?

(学生或许还有其他不同的解决方法,教师要给予充分的肯定)

新课讲解:

从上面992-1=(99+1)(99-1),我们容易看出,这种方法利用了我们刚学过的哪一个乘法公式?

首先我们来做下面两题:(投影)

1.计算下列各式:

(1)(a+2)(a-2)=;

(2)(a+b)(a-b)=;

(3)(3a+2b)(3a-2b)=.

2.下面请你根据上面的算式填空:

(1)a2-4=;

(2)a2-b2=;

(3)9a2-4b2=;

请同学们对比以上两题,你发现什么呢?

事实上,像上面第2题那样,把一个多项式写成几个整式积的形式叫做多项式的因式分解。(投影)

比如:a2–16=a2–42=(a+4)(a–4)

例题1:把下列各式分解因式;(投影)

(1)36–25x2;(2)16a2–9b2;

(3)9(a+b)2–4(a–b)2.

(让学生弄清平方差公式的形式和特点并会运用)

例题2:如图,求圆环形绿化区的面积

练习:第87页练一练第1、2、3题

小结:

这节课你学到了什么知识,掌握什么方法?

教学素材:

a组题:

1.填空:81x2-=(9x+y)(9x-y);=

利用因式分解计算:=。

2、下列多项式中能用平方差公式分解因式的是()(a)(b)(c)(d)3.把下列各式分解因式

(1)1-16a2(2)9a2x2-b2y2

(3).49(a-b)2-16(a+b)2

b组题:

1分解因式81a4-b4=

2若a+b=1,a2+b2=1,则ab=;

3若26+28+2n是一个完全平方数,则n=.

由学生自己先做(或互相讨论),然后回答,若有答不全的,教师(或其他学生)补充.

学生回答1:

992-1=99×99-1=9801-1

=9800

学生回答2:992-1就是(99+1)(99-1)即100×98

学生回答:平方差公式

学生回答:

(1):a2-4

(2):a2-b2

(3):9a2-4b2

学生轻松口答

(a+2)(a-2)

(a+b)(a-b)

(3a+2b)(3a-2b)

学生回答:

把乘法公式

(a+b)(a-b)=a2-b2

反过来就得到

a2-b2=(a+b)(a-b)

学生上台板演:

36–25x2=62–(5x)2

=(6+5x)(6–5x)

16a2–9b2=(4a)2–(3b)2

=(4a+3b)(4a–3b)

9(a+b)2–4(a–b)2

=[3(a+b)]2–[2(a–b)]2

=[3(a+b)+2(a–b)]

[3(a+b)–2(a–b)]

=(5a+b)(a+5b)

解:352π–152?

=π(352–152)

=(35+15)(35–15)?

=50×20?

=1000π(m2)

这个绿化区的面积是

1000πm2

学生归纳总结

蒙氏十的分解教案篇3

一、活动目标

1、引导幼儿通过动手操作,感知8的分解组成,掌握8的7种分法。

2、在感知数的分解组成的基础上,掌握数组成的递增、递减规律和互相交换的规律。

3、发展幼儿观察力、分析力,培养幼儿对数学的兴趣。

二、教学重点、难点

重点:感知整体与部分的关系,学习并记录8的7种分法。

难点:总结归纳8以内数的分解和组成规律。

三、活动准备

1、8以内数的分解和组成教学视频一个。

2、若干小矮人图片和小房子。

3、数字卡片若干。

四、活动过程

(一)、问答形式复习以前学过的数的组成和分解。如:

师:小朋友们,咱们之前学过7的分解组成,我们来复习一下好不好?我来问,你来答,7可以分成3和几?孩子:你来问,我来答,7可以分成3和4。(幼儿边拍手边回答)

(二)、学习8的组成和分解。

1、故事导入。教师:在一座茂密的森林里,住着一位美丽的白雪公主,今天,白雪公主非常高兴,因为有小客人要到森林里作客,你们看,他们来了。

提问:

?1〉来了几位小矮人?

?2〉8位小矮人要住进两座小房子里,该怎么住呢?引出课题《8的分解与组成》。

2、幼儿动手操作,把8张小矮人卡片摆一摆,记一记来思考8的多种分法,帮助白雪公主做出不同的安排方法。

?1〉把幼儿分成2组,每3人一组。

?2〉每组请一名幼儿做记录,其余幼儿动手操作。

?3〉教师根据幼儿操作情况总结8的7种分法:

8 8 8 8

∧ ∧ ∧ ∧

1 7 2 6 3 5 4

7 1 6 2 5 3 4

3、引导幼儿观察8的分解式,发现总结8以内数分解组成规律:把一个数分成两部分,如果一部分增加1,另外一部分就减少1,即递增递减规律。

8

1 7

2 6

3 5

4 4

5 3

6 2

7 1

(三)、巩固练习

1、卡片填数

8 8 8

∧ ∧ ∧ ………

5()7()5()

3、8以内数的分解与组成教学视频。

(四)活动延伸

1、火车开了。游戏规则:幼儿每人一张数字卡片,找和自己卡片上数字合起来是8的小朋友手拉手一起上火车,边唱《火车开了》歌曲边出活动室。

五、教学反思

本节课我从幼儿已有知识出发,结合幼儿的生活实际和年龄特点,创设生动有趣的故事情境,让幼儿通过摆一摆、记一记、说一说等生动有趣的活动,自主尝试探索,学习并掌握了8的7种分法,幼儿能用较为清楚的语言表达分与合的过程,在此基础上,还发现和总结8以内数的分解和组成规律。活动中,幼儿表现出浓厚的兴趣,又体验到了成功的喜悦。不足的是在最后的游戏环节里,忙乱中忘了让幼儿自己去找“好朋友”;个别幼儿动手能力和参与意识较差,不愿与同伴交流,还需加强训练。

蒙氏十的分解教案篇4

教学目标

1、进一步理解自然数、整数、整除、除尽、约数、倍数、奇数、偶数、素数、合数、质因数、分解质因数的概念,掌握能被2、5、3整除数的特征。

2、能对以上概念作正确判断,能熟练地把合数分解质因数。

教学重点、难点

重点、难点:理解概念,并能熟练运用。

教具、学具准备

教 学过程

备 注

一、 知识整理与基本练习

1、判断:下列各式,哪些能整除?哪些不能整除?哪些能除尽?把算式填到相应的圈里。

6.9÷9111÷3除尽整除

18÷669÷1

10÷42.4÷0.8

反馈后提问:什么叫做整除?什么叫约数?什么叫倍数?说一说上面整除算式中谁是谁的约数?谁是谁的倍数?

2、练习:课本p65第1题。

(1)学生在课本上全体练(1人做在投影片上)

(2)投影反馈,矫正错误。

(3)提问:

a、自然数与整数之间有什么关系?(学生回答后出示投影片)

b、什么是素数?什么是合数?怎样判断一个数是素数还是合数?有哪些方法?171和395是素数还是合数?为什么?

c、么是奇数?什么是偶数?判断一个数是奇数还是偶数的标准是什么?

d、答:自然数()和()组成,或者由(),()和()组成。

3、练习,课本p66第4题(学生练习后反馈)

4、出示:在36、48、84、75、15、210、130、204这些数中,

(1)能被2整除的数有(),能被5整除的数有(),能被3整除的数有()。

(2)能同时被2、5整除的数有(),能同时被3、5整除的数有(),能同时被2、3整除的数有()。

(3)说一说,它们各有什么特征?

5、提问:

什么叫分解质因数?把课本p65第1题中的合数分解质因数。

教学过程

备 注

(1)生练习(两个做在投影片上)

(2)反馈,矫正。

(3)练习:课本p66第6题(学生练习后反馈)

二、综合练习

1、填空:(投影片逐题出示,学生先思考,想好后再回答)

(1)12的全部约数有(),把72分解质因数是()。

(2)最小的自然数是(),最小的素数是()最小的合数是(),最小的奇数是(),最小的偶数是()。

(3)一个数的最大约数是60,则它的最小倍数是(),最小约数是()。

(4)自然数a÷b=4,则a能被b(),b是a的(),4能整除()。

2、练习:课本p66第5题(学生练习后反馈,说理)

3、思考题:

有一位初中生参加一次数学竞赛,别人问他成绩如何?他说:“我的分数在60分以上并且我的分数,我的年龄和取得的名词的乘积是4275,你们说我考了几分?得了第几名?”你能想出来吗?

三、课堂作业《作业本》

四、学生总结

通过知识整理及填空、选择、判断各种题型的训练,学生进一步掌握了各个概念,并能对各个概念加以区分。

蒙氏十的分解教案篇5

活动设计背景

让幼儿了解生活中的数学

活动目标

1经力对数量为8.9的物品进行分解、组合的过程,感知8、9的分解、组合。

2感受总数与部分数之间的关系。

3培养初步的观察力,思考能力。

4引导幼儿积极与材料互动,体验数学活动的乐趣。

5引发幼儿学习的兴趣。

教学重点、难点

8、9的分解组合,感受总数与部分数之间的关系。

活动准备

1、教具:“筹码”、“数字卡片”、“分合号”

2、学具:“筹码”、“数字卡片”、“分合号”纸、笔人手一份。

3、 《操作册》第27页。

活动过程

一、运用“数字碰球”游戏复习数的分解、组合。

二、学习8的分解、组合。

1、教师分给幼儿每人8片筹码,按自己的想法分成两份,并用“数字卡片”、“分合号”记录分解结果,先请分成7和1的幼儿展示自己的分法和结果,引导幼儿感受将8分成7和1或分成7和1,虽然改变了两个数字前后顺序,但合起来的结果都是一样的。

2、请8分成2和6,3和5两种分法的幼儿展示自己的分解过程和结果,引导幼儿找出与这种分法的另外两种记录结果。小结俩个部分数,交换了位置,合起来总数是一样的。

3请还有不同分法的幼儿展示:即8分成4和4.

4让幼儿集体完整地读一读8的分解和组合。

三、学习9的分解、组合

1、教师分给幼儿每人9片筹码,让幼儿尝试把自己每次分到的结果记录在纸上,并引导幼儿在摆分合式时按一个分数递增,另一个部分数递减的规律来摆分合式并记录,再找出其中有相同数字的分法。

2、把幼儿分解的结果展示在黑板,并进行检查。

四、游戏活动:做手指游戏“找部分数”。

五、交流小结,收拾学具。

六、活动延伸:完成《操作册》p27

教学反思

1、这节课活动目标很明确难度适中,大部分幼儿能听懂,学会自己操作,幼儿动手能力也比教强,学习兴趣浓厚

2不足:教师讲课不够幼儿化。上课时间太长。

3.大班数学活动教案:5的分解组成教案(附教学反思)

蒙氏十的分解教案篇6

(一)学习目标

1、会用因式分解进行简单的多项式除法

2、会用因式分解解简单的方程

(二)学习重难点重点:因式分解在多项式除法和解方程中两方面的应用。

难点:应用因式分解解方程涉及到的较多的`推理过程是本节课的难点。

(三)教学过程设计

看一看

1.应用因式分解进行多项式除法.多项式除以多项式的一般步骤:

①________________②__________

2.应用因式分解解简单的一元二次方程.

依据__________,一般步骤:__________

做一做

1.计算:

(1)(-a2b2+16)÷(4-ab);

(2)(18x2-12xy+2y2)÷(3x-y).

2.解下列方程:

(1)3x2+5x=0;

(2)9x2=(x-2)2;

(3)x2-x+=0.

3.完成课后练习题

想一想

你还有哪些地方不是很懂?请写出来。

____________________________________

(四)预习检测

1.计算:

2.先请同学们思考、讨论以下问题:

(1)如果a×5=0,那么a的值

(2)如果a×0=0,那么a的值

(3)如果ab=0,下列结论中哪个正确( )

①a、b同时都为零,即a=0,

且b=0;

②a、b中至少有一个为零,即a=0,或b=0;

(五)应用探究

1.解下列方程

2.化简求值:已知x-y=-3,-x+3y=2,求代数式x2-4xy+3y2的值

(六)拓展提高:

解方程:

1、(x2+4)2-16x2=0

2、已知a、b、c为三角形的三边,试判断a2-2ab+b2-c2大于零?小于零?等于零?

(七)堂堂清练习

1.计算

2.解下列方程

①7x2+2x=0

②x2+2x+1=0

③x2=(2x-5)2

④x2+3x=4x

蒙氏十的分解教案推荐6篇相关文章:

4的分解教案8篇

67的分解组成教案优秀8篇

7的分解组成教案8篇

大班5的分解组成教案5篇

六的分解与组成教案8篇

四的分解大班教案8篇

5的分解与组成教案优秀7篇

5的分解数学教案8篇

数学四的分解教案8篇

幼儿园8的分解组成教案7篇

蒙氏十的分解教案推荐6篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
184647